# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch DataLoader for TFRecords""" from torch.optim.lr_scheduler import _LRScheduler import math class AnnealingLR(_LRScheduler): """Anneals the learning rate from start to zero along a cosine curve.""" DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None'] def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1): self.optimizer = optimizer self.start_lr = start_lr self.warmup_iter = warmup_iter self.num_iters = last_iter + 1 self.end_iter = num_iters self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None self.step(self.num_iters) print('learning rate decaying', decay_style) def get_lr(self): # https://openreview.net/pdf?id=BJYwwY9ll pg. 4 if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter: return float(self.start_lr) * self.num_iters / self.warmup_iter else: if self.decay_style == self.DECAY_STYLES[0]: return self.start_lr*((self.end_iter-(self.num_iters-self.warmup_iter))/self.end_iter) elif self.decay_style == self.DECAY_STYLES[1]: return self.start_lr / 2.0 * (math.cos(math.pi * (self.num_iters - self.warmup_iter) / self.end_iter) + 1) elif self.decay_style == self.DECAY_STYLES[2]: #TODO: implement exponential decay return self.start_lr else: return self.start_lr def step(self, step_num=None): if step_num is None: step_num = self.num_iters + 1 self.num_iters = step_num new_lr = self.get_lr() for group in self.optimizer.param_groups: group['lr'] = new_lr def state_dict(self): sd = { 'start_lr': self.start_lr, 'warmup_iter': self.warmup_iter, 'num_iters': self.num_iters, 'decay_style': self.decay_style, 'end_iter': self.end_iter } return sd def load_state_dict(self, sd): self.start_lr = sd['start_lr'] self.warmup_iter = sd['warmup_iter'] self.num_iters = sd['num_iters'] self.end_iter = sd['end_iter'] self.decay_style = sd['decay_style'] self.step(self.num_iters)