Skip to content

Latest commit

 

History

History

download

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Download the metadata

  • Download metadata files from Huggingface Dataset
    # install git lfs
    curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
    sudo apt-get install git-lfs
    git lfs install
    
    # download coyo-700m
    git clone https://huggingface.co/datasets/kakaobrain/coyo-700m

Download the images with img2dataset

  • img2dataset can easily download and store to webdataset or tfrecord format for large-scale distributed training.

Download using Google Cloud Dataproc

  • Dataproc is a fully managed and highly scalable service for running Apache Spark and 30+ open source tools. With dataproc, you can easily configure multi-node clusters and process large amounts of data quickly.

  • Copy dataproc-initialiation.sh to your gs bucket. It contains commands to initialize the environment when each node is launched. (e.g, pip install img2dataset)

    gsutil cp dataproc-initialization.sh gs://${YOUR_GS_BUCKET}/dataproc/dataproc-initialization.sh
  • Download metadata and upload it to Google Cloud Storage

    for i in {00000..00127}; do wget https://huggingface.co/datasets/kakaobrain/coyo-700m/resolve/main/data/part-$i-17da4908-939c-46e5-91d0-15f256041956-c000.snappy.parquet -O - | gsutil cp - gs://${YOUR_GS_BUCKET}/dataset/coyo-700m/parquet/part-$i-17da4908-939c-46e5-91d0-15f256041956-c000.snappy.parquet; done
    
  • Create Dataproc Cluster

    gcloud dataproc clusters create coyo-700m \
        --project=${YOUR_PROJECT_NAME} \
        --region=${YOUR_REGION} \
        --zone=${YOUR_ZONE} \
        --master-machine-type=n2-standard-16 \
        --num-workers=2 \
        --worker-machine-type=n2-standard-16 \
        --num-secondary-workers=8 \
        --secondary-worker-boot-disk-size=100 \
        --image-version=2.0-ubuntu18 \
        --scopes='https://www.googleapis.com/auth/cloud-platform' \
        --properties='yarn:yarn.nodemanager.user-home-dir=/var/lib/hadoop-yarn' \
        --initialization-actions=gs://${YOUR_GS_BUCKET}/dataproc/dataproc-initialization.sh
    • This command creates 10 nodes for the dataproc cluster
      • 1 master machine
      • 2 primary workers
      • 8 secondary workers (preemptible/spot instances)
  • Run/Submit PySpark Job

    gcloud dataproc jobs submit pyspark --cluster=coyo-700m dataproc-img2dataset.py -- \
        --url_list=gcs://${YOUR_GS_BUCKET}/dataset/coyo-700m/parquet \
        --input_format="parquet" \
        --url_col="url" \
        --caption_col="text" \
        --output_format=webdataset \
        --output_folder=gcs://${YOUR_GS_BUCKET}/dataset/coyo-700m/webdataset \
        --distributor="pyspark" \
        --processes_count=1 \
        --thread_count=64 \
        --image_size=384 \
        --retries=1 \
        --min_image_size=200 \
        --max_aspect_ratio=3 \
        --resize_only_if_bigger=True \
        --resize_mode="keep_ratio" \
        --skip_reencode=True \
        --save_additional_columns='["clip_similarity_vitb32","clip_similarity_vitl14","nsfw_score_opennsfw2","nsfw_score_gantman","watermark_score","aesthetic_score_laion_v2"]' \
        --enable_wandb=False

Download using your own cluster

Missing images

  • COYO-700M was made in 2021, unfortunately, so many images may be gone now.
  • As of August 2022, only about 85% of all images are available for download.