{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# What Does Exponential Growth Look Like?" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "sns.set(context='talk', palette='deep', color_codes=True, style='darkgrid')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "time = np.arange(0, 10, 0.01)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fiddle with this rate and see how things change. For large rates, we get the traditional-looking exponential curve. For small rates, things look linear over this small time scale." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "rate = 0.05" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "y = np.exp(rate * time)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEDCAYAAAA849PJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deXxU9b3/8ddkJSQhQCAJBMhKWMIqi4awryKggihSQEVUtHjrUq9FL/3ZW3tra+G2VRDrSt25IAKKAQyyU4uAIAQIkAESIAFJIGQjyWTO749ANIqQhJmczMz7+Xj4eMjJnDmfb5bznjnzPZ+vxTAMAxER8TheZhcgIiLmUACIiHgoBYCIiIdSAIiIeCgFgIiIh1IAiIh4KB+zC6gpwzCo64RVi+XycziunoZOY3Z/njZe0Jjrsq/l8hNcgQsFAOTmFtZp35CQAADy80scWVKDpjG7P08bL2jMtRUaGsRVzv+6BCQi4qkUACIiHkoBICLioRQAIiIeSgEgIuKhFAAiIh7KZaaBioh4oszTBdjtBs0a+zr8uRUAIiINkGEYrN6eydINGVgsFl761QAaN3LsKVsBICLSwJTbKliUks6/0nIA6BzdjEb+3g4/jgJARKQBOV9Yyvxle7GeugDAwB6RPDKhKyXFZQ4/lgJARKSByDiVz/xle8kvLMMCTBwSx6QRHbBYLDij+YUCQESkAdjybTbvrDmIrcIgwN+bh8Yl0j2+xVWbuV0vBYCIiIkq7HYWf3mE1B0nAIho3pj/uKMrrUIDnX5sBYCIiEkKS8pZuHwfB46fA6BbXCgPjUt0+Gyfn6MAEBExwYkzhbz08beczb8IwJikKMYPiMXLy3mXfH5MASAiUs92HDzDm6sOUFpegZ+PF/eP6UTfTuH1XocCQESkntgNgxWbj/LptmMAhDbx59EJ3YiKCDalnlr3Ajpw4ACJiYnk5ORc9XF2u52FCxcybNgwunXrxrhx41i1alWdCxURcWUlpTbmf7y36uSf0LYpv72vj2knf6jlOwCr1crMmTOx2WzXfOwf//hHFi9ezJNPPknHjh1ZtWoVv/71rwkKCmLQoEF1LlhExNWczivmpY+/JTu3GIAhN0QyeVh7fLzN7cdZowCw2WwsXryYefPm4et77YZEmZmZvP/++/z+97/nzjvvBCApKYljx46xefNmBYCIeIx91lxeXZFGcakNby8LU0cmMKhHpNllATUMgJ07dzJ37lxmzJhBeHg4c+bMuerjU1NTadSoEbfffnu17e+9917dKxURcSE/bOZmGNAk0I9Z47vQvk1Ts0urUqMAiIuLIzU1ldDQUJYtW3bNx6enpxMTE8O2bduYN28eR44coU2bNjz++OPccsstdSrUYoGQkIA67evjU9lEqa77uyKN2f152njBdcZcWlbBwmXfsnnPKQDiIkP4zbRehNah7usZ87VuIq5RALRo0aJWB83LyyM7O5tnn32Wxx57jDZt2rBkyRKeeOIJmjdvzk033VSr5xMRcRU5ecX85b2dHMv+vpnbwxO64u/r+G6e18sp00DLy8vJy8vj1VdfZciQIUDlZwBWq5X58+fXKQAMA/Lz69YO6XJy1nV/V6Qxuz9PGy80/DHvs+byj5VpFF204WWxcOeQOEb2acvF4jIu1vE5r2fMoaFBV30X4JQACAwMxNvbm+Tk5KptFouFfv36sXTpUmccUkTENIZh8PlXx1m20YoBBDf25eHbutApqpnZpV2VUwIgKioKu92OzWbDz8+vant5eblTO9uJiNS3klIbb646wK5D3wEQ0yqYWeO70rxJI5MruzanTEIdMGAAhmGQkpJStc1ms7F582Z69erljEOKiNS77Nwi/vDOjqqT/4BurZg95QaXOPmDg94B5OXlkZmZSXx8PEFBQSQlJTFo0CD+8Ic/UFxcTHR0NB988AEnT55k3rx5jjikiIipdh36jjc+28/Fsgq8vSxMGZnAoO6tXeoqh0PeAWzYsIFJkyaRlpZWte2ll17i7rvv5rXXXmPWrFmcO3eOt956iy5dujjikCIiprDbDZZtymD+sr1cLKugaZAfs6fcwOAekS518gewGIZhmF1ETdjtBrm5hXXat6HPHHAGjdn9edp4wfwxF5aU89qnaeyz5gGQ0CaER8Z3JSTQ7xp71t31zgK6WntpdQMVEamBzNMFLPhkL9+dr5zQObx3G+4aEm96P5/roQAQEbmGr9JyWJRykDKbHT8fL+69uSNJXSLMLuu6KQBERH6GrcLOkvUZfLEjC4AWIY14dEJX2oWb18LZkRQAIiJXcL6wlFdXpHEo6zwAiTHNmXlrIkEB1+6I7CoUACIiP5KeeY5XV6SRX1QGmLNeb31QAIiIXGIYBmu2Z7F0QwZ2wyDA34cHxnSiZ0JLs0tzCgWAiAhQfNHG258fYOelu3rbhgUxa3wXwpo1Nrky51EAiIjHO3GmkAWf7OX0ucq59sldI5g2sgN+DbCFsyMpAETEo23bl807q9Mps9nx8fZi6sgEBnRr5XJ39daFAkBEPFK5zc6H6w6z4ZuTQOUUz1+O70J0RBOTK6s/CgAR8Thn80t45ZN9HMspAKBbXCgPjO3sVlM8a0IBICIeZa81l9curdplAW4fGMuYpCi8POCSz48pAETEI9jtBiu3HuXTrccwgKAAX2bemkhiTHOzSzONAkBE3F5BcRmvf7qffUcru3jGtm7CL2/v4jILtziLAkBE3Jr11AUWLt9L7oVSAIb1asOkoa7dxdNRFAAi4pYMw+CLHSdYsv4IFXYDP18v7hvdkZs6u34XT0dRAIiI2ym+WM5bnx+sWqu3VWhjfnl7FyJbBplcWcOiABARt3I0+wILl+/jbH7lwi1JiRFMG5VAIz+d7n5M3xERcQuGYfDlrpMs/vIwtgoDXx8vpozwnLt660IBICIur/iijUWrD7Lj4BkAwptXXvJpG6ZLPlejABARl3Y8p4CFy/dx5nxlI7cbO4dzz6gOBPjr9HYt+g6JiEsyDIMNu0/xYephbBWVjdx+Mbw9g3q01iWfGlIAiIjLKSm18c6adP69/zQAYc0CeOS2LkRFuMdavfVFASAiLuVY9gVefG8np/OKAejdMYzpozvqkk8d6DsmIi7BMAxSv87kzZVpl3r3W5g0tD1Db4jUJZ86UgCISIN3sczGu2sO8a+0HMAze/c7gwJARBq0zNMFvLoijZxLl3xuTAxn2ogEGjfyrN79zqAAEJEG6fsbu45gq7Dj7WXhnls6MaZfNBcuXDS7PLegABCRBqfoYjlv/6CXT1jTAB6+PZHuHcJNrsy9KABEpEE5ciKff6zcV9W++abO4UzTjV1Ooe+oiDQIdsMg5avjfLLpKHajsn3zlBEJ9O+qXj7OogAQEdPlF5by+mf72X/sHABtWgby8G1daN0i0OTK3JsCQERMte9oLm98up8LxeUADOkZyaSh8fj5eptcmftTAIiIKWwVdj7ZbCXlq0wAAvx9mD66I707hplcmedQAIhIvTt7voR/rEwj49QFAOJaN2HmrYm0aBpgcmWeRQEgIvVqx8EzvJ1ykJJSGwCjb2rH+AGxWqTdBAoAEakXZeUVfPTlETZ8cxKAJo19eWBcZ7rEhJpcmedSAIiI0534rpB/rEzj5HdFAHSObsaDYzsTEuRvcmWeTQEgIk7z43YOXhYLtw+I4ZakKLw0t990CgARcYoLxWW8veoAezJyAWjZtBEPjUskLjLE5MrkMgWAiDjcvqO5vPnZAfKLygBISoxg6sgEtXNoYPTTEBGHKbfZ+XhjBmu/zgIgwN+baSM7cFNihMmVyZUoAETEIU6dLeK1lWlknikEID4yhAfHdaal5vY3WAoAEbkuhmGwcfcpPlp3mDKbHYsFxvWLZlxyNN5emtvfkCkARKTOCkvKefvzA3xz+CwAoU0a8eC4ziS0bWpyZVITCgARqZMDx/J4/bP9nC+s/KC3b6cw7hnVQUs1uhAFgIjUyuUmbqu/ysQA/H29mToygX5dItS338UoAESkxk7nFfOPlWkcyykAIKZVMA/dmkh4s8YmVyZ1UetPaA4cOEBiYiI5OTk13ic7O5tevXrxyiuv1PZwItIAGIbBht0nee7t7RzLKcACjEmK4pmpvXTyd2G1egdgtVqZOXMmNputxvsYhsGzzz5LYWFhrYsTEfNdKCpjUcpBdh+p/KC3WbA/D47tTMeoZiZXJterRgFgs9lYvHgx8+bNw9e3dh/wfPDBB1it1joVJyLm2n34LG+nHKDg0mpdfTuFMW1UBwL1Qa9bqNEloJ07dzJ37lzuv/9+nnrqqRo/eVZWFnPnzuX555+vc4EiUv8ultn45+qDvPTxtxQUlxPg78ND4zrz8G1ddPJ3IzV6BxAXF0dqaiqhoaEsW7asRk9st9uZPXs2o0ePZuDAgddVJIDFAiEhdbuj0Mencm3Ruu7vijRm9+es8R7KPMff/283ObnFACTGNuc/7uzRIO7o9bSfMVzfmK81KatGAdCiRYtaH/if//wnWVlZvPrqq7XeV0TqX0WFnaXrj7B0/RHsdgMfby+mjOrA2OQYvLw0vdMdOWUaqNVq5W9/+xsvvfQSwcHBDnlOw4D8/JI67Xs5Oeu6vyvSmN2fI8d7Oq+Y1z7dz9HsyjV6I1sG8tC4RNqGBVFQcPG6n99RPO1nDNc35tDQoKu+C3B4AFRUVDB79mxuvvlmkpOTq80Ystvt2Gw2fHx0+4FIQ2AYBhv3XOrjU24HYGSfttwxKBbfS5cexH05/EycnZ3Nnj172LNnD8uXL6/2tZdffpmXX36Z9PR0Rx9WRGopv6iMRZ9/v2BLs2B/HhjTiU7RzU2uTOqLwwMgLCyMpUuX/mT7xIkTmTx5MnfccYejDykitfTj6Z03dg5n6sgEzfDxMA4JgLy8PDIzM4mPjycoKIiuXbte8XFhYWE/+zURcb6LZTY+WneETXtOARDg78O0kQlasMVDOaRZ94YNG5g0aRJpaWmOeDoRcYL0zHP8vze3V538O7Zryu/v76uTvwezGIZhmF1ETdjtBrm5dWsnoZkDnsHTxlzT8ZbbKvh4o5Uvvs7CAHy8vZgwMJaRfdvi5WLdOz3tZwzXPwvoalN4NR1HxI0dzb7AG5/tJ/vSTV1REcE8MKYTkS2DTK5MGgIFgIgbslXY+WzbMT7bdhy7YeDtZWFsv2jGJEXh461lGqWSAkDEzZz4rpA3PttP5unKS6atWwTywNhOREc0MbkyaWgUACJuwm43WPN1Jp9ssmKrMLAAo/q2Y/zAGN3UJVekABBxA6fPFfPmqgMcOZEPQMumjZgxRouzy9UpAERcmGEYrN91gsXrj1S1chjcM5K7hsTRyE9/3nJ1+g0RcVFnz5fwysffsucHK3VNH92RLrGhJlcmrkIBIOJiDMNg274cPlx3mOKLlc0WkxIj+MWI9mrlILWiABBxIfmFpbyzJp1vDle+6m8S6Me0kQn06hBmcmXiihQAIi7AMAy+2n+aD744RNGlV/03JoYz8/auUGE3uTpxVQoAkQbufGEp76xOZ/ela/2BjXz4xYgERiVFY7FYPKotgjiWAkCkgTIMg6/STvNB6vev+nu2b8E9ozoQEuSPxcX6+EjDowAQaYDOFZTy7prqr/qnjEzgxk7hOvGLwygARBqQqhk+qYcpLq181X9DQkumjUwgJMjf5OrE3SgARBqIcwWlvLP6YNUSjUEBvkwdmUCfjmF61S9OoQAQMdmVXvX3SmjJ1FEdCAn0M7k6cWcKABETnSso5Z+rD/KtXvWLCRQAIiYwDIOteyvv5i259Kq/d4eWTB3ZgSZ61S/1RAEgUs/yLlzknTXp1V71TxvVgT4ddTev1C8FgEg9sRsGG3efYsn6I1wsqwCgT8cwpoxMoEljveqX+qcAEKkHOXnFLEo5yKGs8wA0aezL1JEd6K1X/WIiBYCIE1XY7azdnsXyLUcpt1X27EnuEsGkYe0JClDnTjGXAkDESTJPF/D25wc5froAgNAmjbj35g7q1y8NhgJAxMHKbRWs3HqMlK8ysRuVa/MO69WGCYNitUqXNCj6bRRxoENZ51mUcpCcvGIAWoU2ZvroTsS3CTG5MpGfUgCIOEBJqY2PN2bw5a6TAHh7WRh9UxTj+kXh6+NtcnUiV6YAELlO32bk8s6ag+RdKAUgKiKY6aM70i482OTKRK5OASBSR4Ul5XyYeph/peUA4Ovjxe0DYhjZpy3eXl4mVydybQoAkVoyDIOvD57h/S8OUVBcDkCHtk25b3RHwps3Nrk6kZpTAIjUwtn8Et5be6iqjUMjP2/uGhLPwB6t8VLzNnExCgCRGrDbDVJ3nuCTTVZKyyvbOHSPC2XaqA40b9LI5OpE6kYBIHINx3MKWLT6IMdzKm/oCgn0Y8qIBHp1aKmWzeLSFAAiP6O0rIIVW46y9uss7IYBwOCekUwcFEvjRmrjIK5PASByBXutuby7Jp2z+RcBaN0ikHtGdSChbVOTKxNxHAWAyA/kF5Xx0brD/Hv/aQB8vC2M6xfN6Jui8PHW1E5xLwoAESqndm7+Npsl649QdLFyha4ObZtyz80daBUaaHJ1Is6hABCPl51bxDur00m/1Ks/sJEPdw2Jp3+3VvqQV9yaAkA8lq3CzudfHeezbcewVVR+yHtT53DuHtZe6/KKR1AAiEc6lHWed9akc+psEQAtQhpxzyj16hfPogAQj1JYUs6S9UfY/G02AF4WC6P6tuXW/jH4+6prp3gWBYB4BLthsPXbbJZsyKCwpLJ/T0yrYO69WV07xXMpAMTtnfiukHfXpHP4RD4AAf4+3DEolsE9IvHy0oe84rkUAOK2SssqWLm18k7eCvv3H/JOGhpPSJC/ydWJmE8BIG7pm0Pf8UHqIXIvLdIS3rwx00Ym0Dm6ucmViTQcCgBxK2fOFfOPZXvZfeQsAD7eXoztF8XoG6Pw9dGdvCI/pAAQt2CrsPPJxgyWrDtc1a45MaY5U0cmEN5Mi7SIXIkCQFzeoazzvLsmnZOX5vSHBPkxeVh7+nQM0528IlehABCXVVBcxpL1GWzZe3lOP9ycFM2YG9sR4K9fbZFrqfVfyYEDB5g4cSLr1q0jIiLiZx/33Xff8fe//52tW7dy/vx5YmJiePDBBxk9evR1FSxiNwy2/KhxW0yrYH55R3diI0PIzy8xuUIR11CrALBarcycORObzXbVx5WVlfHAAw9QUFDAr371K8LCwlizZg2PP/44FRUVjB079rqKFs91LOcC7609hPXUBaD6nP5mutYvUis1CgCbzcbixYuZN28evr7XXglp06ZNHDx4kCVLltCtWzcAkpOTOXXqFK+//roCQGqtsKScZZusbPzmJMalbZrTL3J9ahQAO3fuZO7cucyYMYPw8HDmzJlz1ccHBgYyadIkunbtWm17bGwsO3furHu14nEuX+5Z+oMWDpEtA5k6IoEO7ZqZXJ2Ia6tRAMTFxZGamkpoaCjLli275uOTkpJISkqqtq28vJyNGzfSvn37OhVqsUBISECd9vXxqWzyVdf9XZE7jPnIifO8sSKNwycq+/QH+Ptw9/AEbk668upc7jDm2vC08YLGXFvXmgRXowBo0aJFrQ/8Y3PnzuXYsWMsWLDgup9L3FtBURkfrE3ni68zubQWOwN7RHLP6I40a9LI3OJE3IjT58oZhsFf/vIXFi1axIwZMxg+fHgdn4c6z+64nJyeNDvEFcdsNww27znFxxutVZd72rQMZMrlyz2GcdXxuOKYr4enjRc05toKDQ266rsApwZAWVkZs2fPZtWqVcyYMYOnn37amYcTF3Y0+wLvrU3naHYBAAH+3tzeP5ahvSLx9lILBxFncFoAFBYWMnPmTHbt2sWzzz7Lvffe66xDiQsrLCnn440ZbNp9qmp2T1JiBHcNidPsHhEnc0oAVFRU8Mgjj7Bnzx7+93//Vzd/yU/Y7Qab9pzi440ZVTdztWkZxNSRCSS0bWpydSKewSEBkJeXR2ZmJvHx8QQFBfHRRx+xfft2Jk2aRKtWrdi9e3fVYy0WC927d3fEYcVFZZzM5/0vDnEs5/vLPeMHxDLkBl3uEalPDgmADRs28Mwzz/DOO+9w4403smbNGgAWL17M4sWLqz3W29ub/fv3O+Kw4mLOF5aydEMG2/blVG1L7hLBxCHxhAT6mViZiGeyGMbliXYNm91ukJtbWKd9NXPAXOU2O1/syOLTbccoLats1dwuPIgpIxJo38Zxl3sa0pjrg6eNFzTm2goNDbrqsqdqmShOYxgGezJy+WjdYc6cq/zlDQrw5Y5BsQzo1lrr8YqYTAEgTpGdW8SH6w6zz5oHgJfFwrBebbitfzSNG127n5SIOJ8CQByq+KKNT7cdJXXHiaqF2BOjm3H38AQiWwSaXJ2I/JACQBzCbhhs/TabjzdmcKG48i7elk0bcffQ9vRo30Irc4k0QAoAuW4ZJ/P5IPVQ1V28fr5ejE2KZlTftvheamQlIg2PAkDq7FxB5bTOf6V9P63zpsRw7hwcT7Ng3cUr0tApAKTWrjStMyo8mF+MaO/QaZ0i4lwKAKkxwzDYdegsS9Yf4cz5ymmdwY19uWNQHP27ttK0ThEXowCQGjmeU8BH6w6TnlW5OIumdYq4PgWAXNX5wlKWbbSydW92VbfObnGhTBoaT6tQTesUcWUKALmisvIK1nydxef/Ok5peeV1/siWgdw9tD2JMc1Nrk5EHEEBINUYhsH2A2dYuuEIuRdKgcr2DeMHxjKweyt16xRxIwoAqZJxKp+P1h0m4+QFALy9LIzo05axSdE0bqRfFRF3o79qIe/CRZZuzOCrtNNV23oltOTOIXGENWtsYmUi4kwKAA92scxGyleZrNmeSZnNDlS2aZ48rH3lIuwi4tYUAB7Ibhj8a18OH2/M4HxhGQAhgX5MGBRLchfN5xfxFAoAD3Pw+DkWrz/C8UvLMfr6eDGqb1tuuSmKRn76dRDxJPqL9xCnzhaxZP0R9mTkVm27sXM4EwfFERrSyMTKRMQsCgA3l19UxorNVjbtycZ+afXP+MgQ7hoaT3xkiMnViYiZFABu6mKZjU83H+WTTRlVDdvCmgUwcVAcvTq0VH9+EVEAuBu73WDr3mxWbD1K3g9u5Lo1OZrBPSPx8daNXCJSSQHgRvZZc/m/9Uc48V0RUPkB7/DebRhzU5QatonITygA3EDm6QKWrD9C2rFzVdsG9ohk8sgE/DWlU0R+hgLAheVduMgnm61s25tT1amzY7um3DU0nu4dwgHIzy8xr0ARadAUAC6opNRGyr+Ps3Z7VtUdvK1CG3PXkHi6xYXqA14RqREFgAuxVdjZtOcUK7YcpaC4HIAmgX7c3j+GAerUKSK1pABwAXbDYMfBMyzbZOXMucpLOn6+Xtzctx2j+rYjwF8/RhGpPZ05Gri0Y3ks3ZBR1brBYoH+XVtx+4BYmgX7m1ydiLgyBUADdTyngKUbqs/suSGhJRMGxtK6hZZiFJHrpwBoYM6cK2bZJivbD5yp2pbQJoSJQ9S6QUQcSwHQQOQXlfHp1qNs3H2KCnvlpM42LQO5Y1CcZvaIiFMoAExWUmpjzfZM1mzPqlp8PbSJP7cPiCUpMUK9+UXEaRQAJim32dmw+ySfbTtWNaUzKMCXsUlRDLkhEl8fb5MrFBF3pwCoZ3bDYPv+0yzbZOVs/kUA/Hy8GNm3LTf3jdLi6yJSb3S2qSeGYbDvaB4fb8gg80whAF4WCwN7tObW5GiaBmlKp4jULwVAPTiUdZ5lGzM4dCK/alvvjmFMGBhLRPPGJlYmIp5MAeBEx3MKWLbJyl7r98swdopqxsTBccS0amJiZSIiCgCnyM4t4pPNR9lx8Pu5/LGtmzBhYCydo5ubWJmIyPcUAA509nwJK7YeZdu+HC4tv0tky0AmDIylR3wLzeUXkQZFAeAA+YWlfLbtOBt2n6y6iSusWQC3D4ihb6dwvHTiF5EGSAFwHQpLykn593HW7ThR1Ze/WbA/tyZHk9y1ldbfFZEGTQFQByWlNlJ3ZLF6eyYlpZV37+omLhFxNQqAWii3VbB+10k++9dxCksq794N8Pfm5r7tGN67rfryi4hL0RmrBmwVdrbszebTrcc4V1AKVN69O6x3G0bfGEVQgK/JFYqI1J4C4Coq7Ha27cvh063Hqto2eHtZGNwjkjH9onT3roi4NAXAFdjtBl/tz2Hl1mNVSzBaLNCvSwS3JcfQommAyRWKiFw/BcAP2O0G2w+eZuWWY+TkFQOVJ/6bOoczLjlGbRtExK0oAKjs0Lkz/TtWbDnKqbNFAFiAPp3CuDU5RkswiohbqnUAHDhwgIkTJ7Ju3ToiIiJ+9nFFRUXMnTuXtWvXUlxcTO/evfmv//ovoqOjr6dehzIMg12HzrJii5UT3xVVbe/doSW39o+hTcsgE6sTEXGuWgWA1Wpl5syZ2Gy2az72iSeeYO/evTz99NMEBgYyf/587rnnHlatWkVwcHCdC3YEwzDYcySX5VusZJ4urNres30LbusfQ7twc+sTEakPNQoAm83G4sWLmTdvHr6+157yuGPHDjZu3Mjrr7/OwIEDAejduzfDhg3jww8/5KGHHrq+quvIMAz2WvNYvtnKsZyCqu094itP/FEROvGLiOeoUQDs3LmTuXPnMmPGDMLDw5kzZ85VH79161YCAwNJTk6u2ta8eXP69OnDpk2b6j0ADMPg2yNneX/1QTJOXaja3jU2lNv6xxDbWq2ZRcTz1CgA4uLiSE1NJTQ0lGXLll3z8VarlaioKLy9q7dEaNeuHSkpKXUq1GKBkJDaT78sKC7juTf+TdoPevJ3j2/BpOEJdIhqVqdaXIHPpXYUdfmeuSpPG7OnjRc05tq6Vh/KGgVAixYtanXQwsJCgoJ++gFqYGAghYWFV9jDeXYePFN18u8SG8qk4Ql0jlFPfhERp0wDNS43w78CL6+6dcg0DMjPL6n1fl2imjFjXGeiIprQJrRyHn9dnsfVXH614AljvczTxuxp4wWNubZCQ4Ou+i7AKQEQFBTEiRMnfrK9qKjoiu8MnMnXx4tb+sUAnvVLIyJyLU5pWB8TE0NWVtZP3gkcP36cmJgYZxxSRERqyewo1goAAAhLSURBVCkB0L9/fy5cuMC2bduqtuXl5bFjxw769evnjEOKiEgtOSQA8vLy2L17d9UHvH369KFv3748+eSTLFmyhC+++IL77ruP4OBgJk+e7IhDiojIdXJIAGzYsIFJkyaRlpZWtW3+/PkMHTqUF198kdmzZxMREcGiRYsICQlxxCFFROQ6WYyrTdlpQOx2g9zcuk0h1cwBz+BpY/a08YLGXFuhoUF4ef38NCCtWi4i4qFc5h2AYRjUtdLL82BdY6SOoTG7P08bL2jMddnXcpUbAVwmAERExLF0CUhExEMpAEREPJQCQETEQykAREQ8lAJARMRDKQBERDyUAkBExEMpAEREPJQCQETEQykAREQ8lAJARMRDKQBERDyU2wfAZ599xpgxY+jWrRujR49m+fLlZpfkVHa7nQ8//JBx48bRs2dPhg8fzgsvvFC1Wpu7e/TRRxkxYoTZZdSLr7/+msmTJ9O9e3f69+/P888/T1FRkdllOc2HH37I6NGj6dGjB+PGjWPlypVml+Q0Bw4cIDExkZycnGrbt2zZwh133EH37t0ZOnQob7311nUdx60DICUlhaeeeork5GQWLFhA3759+c1vfsPq1avNLs1p3njjDZ5//nkGDx7MggULmD59OsuXL+exxx4zuzSnW7FiBV988YXZZdSL3bt3M336dFq2bMnChQuZNWsWK1euZM6cOWaX5hSLFy/md7/7HYMHD+aVV16hX79+/Od//icpKSlml+ZwVquVmTNnYrPZqm3ftWsXDz/8MLGxsbz88suMGzeOF198kTfffLPuBzPc2PDhw43HH3+82rbHHnvMuPnmm02qyLnsdrvRp08f43e/+1217atWrTISEhKM/fv3m1SZ8+Xk5Bh9+vQxBg4caAwfPtzscpxuypQpxpQpUwy73V617b333jOGDRtmFBcXm1iZc0yaNMmYNm1atW2/+MUvjKlTp5pUkeOVl5cb7733ntGzZ0+jb9++RkJCgpGdnV319Xvvvde48847q+3z4osvGr179zZKS0vrdEy3fQeQlZVFZmYmI0eOrLZ91KhRWK1WsrKyTKrMeYqKirj11lsZO3Zste2xsbEAZGZmmlFWvZgzZw7JyckkJSWZXYrT5eXlsWPHDiZPnlxtsY8pU6aQmppKQECAidU5R2lpKYGBgdW2NW3alPPnz5tUkePt3LmTuXPncv/99/PUU09V+1ppaSk7duy44vnswoUL7Nq1q07HdNsAsFqtAMTExFTbHhUVBcDRo0frvSZnCwoKYs6cOfTq1ava9tTUVADi4+PNKMvplixZQlpaGr/97W/NLqVeHDp0CMMwCAkJ4fHHH6dHjx706tWL5557josXL5pdnlPcc889bN68mZSUFAoLC1m9ejUbNmzgtttuM7s0h4mLiyM1NZVHH30Ub2/val/LysqivLzc4eczn7qV2vAVFBQAlSfFH7r8KsJTPhTds2cPr732GsOHDycuLs7schzu5MmTvPDCC7zwwgs0b97c7HLqRV5eHgCzZ89mxIgRLFy4kPT0dP72t79RWlrKn/70J5MrdLwxY8bw1Vdf8fjjj1dtGz9+PA888ICJVTlWixYtfvZrzjqfuW0AGJdWuvzxepiXt3t5ue2bnyo7d+7k4Ycfpk2bNvzhD38wuxyHMwyDZ599lkGDBjFq1Cizy6k35eXlANxwww0899xzACQlJWEYBn/+85+ZNWsWbdu2NbNEh3vkkUf45ptveOaZZ+jcuTN79uzhlVdeqXrX6+5+7nx2WV3PZ257FgwODgZ+moyXp8ld/rq7+vzzz5k+fTqtWrVi0aJFNGvWzOySHO79998nPT2dZ599FpvNhs1mq/pD+eH/u5vLr/oGDhxYbXv//v0xDIP09HQzynKaXbt2sWXLFubMmcN9991H3759efDBB5k9ezbvvvuu2433Sn7ufHb533U9n7ltAFy+VvbjDz6PHz9e7evu6O233+bJJ5+kR48evP/++4SFhZldklOsWbOGc+fO0b9/fxITE0lMTGT58uVkZmaSmJjIJ598YnaJThEdHQ1AWVlZte2X3xn83KtEV3Xq1Cmg8h3PD/Xu3RuAjIyMeq+pvrVr1w5vb++fnM8u/7uu5zO3DYCoqCjatGnzkzn/a9euJTo6mtatW5tUmXMtWbKEP/3pT4wePZo33njDrd/p/Pd//zdLly6t9t+QIUOIiIio+n93FBcXR2RkJJ9//nm17evXr8fHx4eePXuaVJlzXD65ff3119W27969G4DIyMh6r6m++fv707t3b9auXVvtne2aNWsIDg6mS5cudXpet/0MAGDWrFk888wzhISEMHjwYL788ktSUlL461//anZpTpGbm8v//M//EBkZyZQpU9i/f3+1r7dr186tPii9PL31h5o2bYqfnx9du3Y1oaL6YbFYeOqpp3jyySd56qmnmDBhAvv27WPhwoVMmzbNrX7GAImJiQwfPpw//vGPFBUV0alTJ/bt28eCBQsYOHAg3bt3N7vEevHII48wffp0nnjiCcaPH88333zDm2++ya9//es6T/116wCYMGECZWVlvPXWWyxZsoS2bdvy5z//mVtuucXs0pxi8+bNlJSUcPLkSaZMmfKTr7/44otuNW3Ok91yyy34+fmxYMECZs6cSWhoKLNmzWLmzJlml+YUf/3rX5k/fz6LFi0iNzeXyMhI7r//fh566CGzS6s3SUlJvPzyy7z00kvMmjWL8PBwnn76ae6///46P6fFcNdPykRE5Krc9jMAERG5OgWAiIiHUgCIiHgoBYCIiIdSAIiIeCgFgIiIh1IAiIh4KAWAiIiHUgCIiHio/w8+fWu+NcTu6wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(time, y)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }