Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

UserWarning for train dpo with lora: None of the inputs have requires_grad=True. Gradients will be None #2486

Open
7 of 9 tasks
xkw666 opened this issue Dec 16, 2024 · 2 comments

Comments

@xkw666
Copy link

xkw666 commented Dec 16, 2024

System Info

  • Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35
  • Python version: 3.12.8
  • PyTorch version: 2.2.2
  • CUDA device(s): NVIDIA A100-PCIE-40GB, NVIDIA A100-PCIE-40GB
  • Transformers version: 4.46.3
  • Accelerate version: 1.2.1
  • Datasets version: 3.2.0
  • HF Hub version: 0.26.5
  • TRL version: 0.13.0.dev0
  • bitsandbytes version: 0.45.0
  • DeepSpeed version: 0.16.1
  • Diffusers version: not installed
  • Liger-Kernel version: not installed
  • LLM-Blender version: not installed
  • OpenAI version: not installed
  • PEFT version: 0.14.0

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder
  • My own task or dataset (give details below)

Reproduction

import argparse,os

import torch
from datasets import load_dataset
from time import sleep
from transformers import AutoModelForCausalLM, AutoTokenizer

from trl import (
    DPOConfig,
    DPOTrainer,
    ModelConfig,
    ScriptArguments,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


def main(script_args, training_args, model_args):
    ################
    # Model & Tokenizer
    ###################
    torch_dtype = (model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype))
    quantization_config = get_quantization_config(model_args)

    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else 'cuda',
        quantization_config=quantization_config,)
    
    model = AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
    )
    if hasattr(model, "enable_input_require_grads"):
        print('enable_input_require_grads')
        model.enable_input_require_grads() ## To avoid error https://github.com/huggingface/trl/issues/731

    peft_config = get_peft_config(model_args)
    if peft_config is None:
        ref_model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
        )
    else:
        ref_model = None
        
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )

    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    if tokenizer.chat_template is None:
        tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
    if script_args.ignore_bias_buffers:
        # torch distributed hack
        model._ddp_params_and_buffers_to_ignore = [
            name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
        ]

    ################
    # Dataset
    ################
    dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
    print(dataset)
    ##########
    # Training
    ################
    print( training_args.eval_strategy)
    trainer = DPOTrainer(
        model,
        ref_model,
        args=training_args,
        train_dataset=dataset[script_args.dataset_train_split],
        eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
        processing_class=tokenizer,
        peft_config=peft_config,
    )

    trainer.train()

    if training_args.eval_strategy != "no":
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
    trainer.model.save_pretrained(output_dir)
    # if training_args.push_to_hub:
    #     trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
    dataclass_types = (ScriptArguments, DPOConfig, ModelConfig)
    if subparsers is not None:
        print("=="*50)
        parser = subparsers.add_parser("dpo", help="Run the DPO training script", dataclass_types=dataclass_types)
    else:
        parser = TrlParser(dataclass_types)
    return parser


if __name__ == "__main__":
    parser = make_parser()
    script_args, training_args, model_args = parser.parse_args_and_config()
    print('\n',model_args)
    print('\n',training_args)
    print('\n',script_args)
    main(script_args, training_args, model_args)

outputs:

/anaconda3/envs/Safe/lib/python3.12/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
    ...

Expected behavior

I used the official example to train dpo with lora, and encountered UserWarning: None of the inputs have requires_grad=True. Gradients will be None. I found similar problems in issus and I added this step model.enable_input_require_grads() in the code, but this warning still appears. I wonder if this will affect the training results?

Checklist

  • I have checked that my issue isn't already filed (see open issues)
  • I have included my system information
  • Any code provided is minimal, complete, and reproducible (more on MREs)
  • Any code provided is properly formatted in code blocks, (no screenshot, more on code blocks)
  • Any traceback provided is complete
@Ciao-CA
Copy link

Ciao-CA commented Dec 20, 2024

I have the same problem

@karlcuinju
Copy link

Any solution now?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants