Skip to content

Latest commit

 

History

History

TNT

Transformer in Transformer (TNT)

By Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. [arXiv]

Requirements

Pytorch 1.7.0, timm 0.3.2, apex

Code

Training example for 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 train.py /path/to/imagenet/ --model tnt_s_patch16_224 --sched cosine --epochs 300 --opt adamw -j 8 --warmup-lr 1e-6 --mixup .8 --cutmix 1.0 --model-ema --model-ema-decay 0.99996 --aa rand-m9-mstd0.5-inc1 --color-jitter 0.4 --warmup-epochs 5 --opt-eps 1e-8 --repeated-aug --remode pixel --reprob 0.25 --amp --lr 1e-3 --weight-decay .05 --drop 0 --drop-path .1 -b 128 --output /path/to/save/models/

The pretrained models will be released as soon.

Citation

@misc{han2021transformer,
      title={Transformer in Transformer}, 
      author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
      year={2021},
      eprint={2103.00112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Third-party implementations

  1. Pytorch with ImageNet pretrained models: https://www.github.com/rwightman/pytorch-image-models/tree/master/timm/models/tnt.py
  2. JAX/FLAX: https://github.com/NZ99/transformer_in_transformer_flax
  3. MindSpore Code: https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT and pretrained weights on Oxford-IIIT Pets dataset: https://www.mindspore.cn/resources/hub/details?noah-cvlab/gpu/1.1/tnt_v1.0_oxford_pets