Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LeetCode] 441. Arranging Coins #441

Open
grandyang opened this issue May 30, 2019 · 0 comments
Open

[LeetCode] 441. Arranging Coins #441

grandyang opened this issue May 30, 2019 · 0 comments

Comments

@grandyang
Copy link
Owner

grandyang commented May 30, 2019

 

You have a total of n coins that you want to form in a staircase shape, where every k -th row must have exactly k coins.

Given n , find the total number of full staircase rows that can be formed.

n is a non-negative integer and fits within the range of a 32-bit signed integer.

Example 1:

n = 5

The coins can form the following rows:
¤
¤ ¤
¤ ¤

Because the 3rd row is incomplete, we return 2.

Example 2:

n = 8

The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤

Because the 4th row is incomplete, we return 3.

 

这道题给了我们n个硬币,让我们按一定规律排列,第一行放1个,第二行放2个,以此类推,问我们有多少行能放满。通过分析题目中的例子可以得知最后一行只有两种情况,放满和没放满。由于是按等差数列排放的,我们可以快速计算出前i行的硬币总数。我们先来看一种O(n)的方法,非常简单粗暴,就是从第一行开始,一行一行的从n中减去,如果此时剩余的硬币没法满足下一行需要的硬币数了,我们之间返回当前行数即可,参见代码如下:

 

解法一:

class Solution {
public:
    int arrangeCoins(int n) {
        int cur = 1, rem = n - 1;
        while (rem >= cur + 1) {
            ++cur;
            rem -= cur;
        }
        return n == 0 ? 0 : cur;
    }
};

 

再来看一种O(lgn)的方法,用到了二分搜索法,我们搜索前i行之和刚好大于n的临界点,这样我们减一个就是能排满的行数,注意我们计算前i行之和有可能会整型溢出,所以我们需要将变量都定义成长整型,参见代码如下:

 

解法二:

class Solution {
public:
    int arrangeCoins(int n) {
        if (n <= 1) return n;
        long low = 1, high = n;
        while (low < high) {
            long mid = low + (high - low) / 2;
            if (mid * (mid + 1) / 2 <= n) low = mid + 1;
            else high = mid;
        }
        return low - 1;
    }
};

 

再来看一种数学解法O(1),充分利用了等差数列的性质,我们建立等式, n = (1 + x) * x / 2, 我们用一元二次方程的求根公式可以得到 x = (-1 + sqrt(8 * n + 1)) / 2, 然后取整后就是能填满的行数,一行搞定简直丧心病狂啊:

 

解法三:

class Solution {
public:
    int arrangeCoins(int n) {
        return (int)((-1 + sqrt(1 + 8 * (long)n)) / 2);
    }
};

 

参考资料:

https://discuss.leetcode.com/topic/65664/my-55ms-c-solution

https://discuss.leetcode.com/topic/65575/java-o-1-solution-math-problem

https://discuss.leetcode.com/topic/65631/c-three-solutions-o-n-o-logn-o-1/2

 

LeetCode All in One 题目讲解汇总(持续更新中...)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant