############################################################################# ## ## This file is part of GAP, a system for computational discrete algebra. ## This file's authors include Thomas Breuer. ## ## Copyright of GAP belongs to its developers, whose names are too numerous ## to list here. Please refer to the COPYRIGHT file for details. ## ## SPDX-License-Identifier: GPL-2.0-or-later ## ## This file declares the operations for additive cosets. ## ############################################################################# ## #C IsAdditiveCoset( ) ## ## An additive coset is an external additive set whose additively acting ## domain is an additive group. ## The additive coset and its additively acting domain lie in the same ## family. ## ## Note that additive cosets for non-commutative addition are not supported. ## DeclareCategory( "IsAdditiveCoset", IsExtASet and IsAssociativeAOpESum and IsTrivialAOpEZero ); ############################################################################# ## #O AdditiveCoset( , ) ## DeclareOperation( "AdditiveCoset", [ IsAdditiveGroup, IsAdditiveElement ] );