πAbout β’ π₯Quick Start β’ πLLM Backends β’ πDocuments β’ πCitation β’ πAcknowledgement
Who's using EvalPlus datasets? EvalPlus has been used by various LLM teams, including:
- Meta Llama 3.1 and 3.3
- Allen AI TΓLU 1/2/3
- Qwen2.5-Coder
- CodeQwen 1.5
- DeepSeek-Coder V2
- Qwen2
- Snowflake Arctic
- StarCoder2
- Magicoder
- WizardCoder
Below tracks the notable updates of EvalPlus:
- [2024-10-20
v0.3.1
]: EvalPlusv0.3.1
is officially released! Highlights: (i) Code efficiency evaluation via EvalPerf, (ii) one command to run all: generation + post-processing + evaluation, (iii) support for more inference backends such as Google Gemini & Anthropic, etc. - [2024-06-09 pre
v0.3.0
]: Improved ground-truth solutions for MBPP+ tasks (IDs: 459, 102, 559). Thanks to EvalArena. - [2024-04-17 pre
v0.3.0
]: MBPP+ is upgraded tov0.2.0
by removing some broken tasks (399 -> 378 tasks). ~4pp pass@1 improvement could be expected.
Earlier news :: click to expand ::
- (
v0.2.1
) You can use EvalPlus datasets via bigcode-evaluation-harness! HumanEval+ oracle fixes (32). - (
v0.2.0
) MBPP+ is released! HumanEval contract & input fixes (0/3/9/148/114/1/2/99/28/32/35/160). - (
v0.1.7
) Leaderboard release; HumanEval+ contract and input fixes (32/166/126/6) - (
v0.1.6
) Configurable and by-default-conservative timeout settings; HumanEval+ contract & ground-truth fixes (129/148/75/53/0/3/9/140) - (
v0.1.5
) HumanEval+ mini is released for ultra-fast evaluation when you have too many samples! - (
v0.1.1
) Optimizing user experiences: evaluation speed, PyPI package, Docker, etc. - (
v0.1.0
) HumanEval+ is released!
EvalPlus is a rigorous evaluation framework for LLM4Code, with:
- β¨ HumanEval+: 80x more tests than the original HumanEval!
- β¨ MBPP+: 35x more tests than the original MBPP!
- β¨ EvalPerf: evaluating the efficiency of LLM-generated code!
- β¨ Framework: our packages/images/tools can easily and safely evaluate LLMs on above benchmarks.
Why EvalPlus?
- β¨ Precise evaluation: See our leaderboard for latest LLM rankings before & after rigorous evaluation.
- β¨ Coding rigorousness: Look at the score differences! esp. before & after using EvalPlus tests! Less drop means more rigorousness in code generation; while a bigger drop means the generated code tends to be fragile.
- β¨ Code efficiency: Beyond correctness, our EvalPerf dataset evaluates the efficiency of LLM-generated code via performance-exercising coding tasks and test inputs.
Want to know more details? Read our papers & materials!
- EvalPlus: NeurIPS'23 paper, Slides, Poster, Leaderboard
- EvalPerf: COLM'24 paper, Poster, Documentation, Leaderboard
pip install --upgrade "evalplus[vllm] @ git+https://github.com/evalplus/evalplus"
# Or `pip install "evalplus[vllm]" --upgrade` for the latest stable release
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset [humaneval|mbpp] \
--backend vllm \
--greedy
π‘οΈ Safe code execution within Docker :: click to expand ::
# Local generation
evalplus.codegen --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset humaneval \
--backend vllm \
--greedy
# Code execution within Docker
docker run --rm --pull=always -v $(pwd)/evalplus_results:/app ganler/evalplus:latest \
evalplus.evaluate --dataset humaneval \
--samples /app/humaneval/ise-uiuc--Magicoder-S-DS-6.7B_vllm_temp_0.0.jsonl
pip install --upgrade "evalplus[perf,vllm] @ git+https://github.com/evalplus/evalplus"
# Or `pip install "evalplus[perf,vllm]" --upgrade` for the latest stable release
sudo sh -c 'echo 0 > /proc/sys/kernel/perf_event_paranoid' # Enable perf
evalplus.evalperf --model "ise-uiuc/Magicoder-S-DS-6.7B" --backend vllm
π‘οΈ Safe code execution within Docker :: click to expand ::
# Local generation
evalplus.codegen --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset evalperf \
--backend vllm \
--temperature 1.0 \
--n-samples 100
# Code execution within Docker
sudo sh -c 'echo 0 > /proc/sys/kernel/perf_event_paranoid' # Enable perf
docker run --cap-add PERFMON --rm --pull=always -v $(pwd)/evalplus_results:/app ganler/evalplus:latest \
evalplus.evalperf --samples /app/evalperf/ise-uiuc--Magicoder-S-DS-6.7B_vllm_temp_1.0.jsonl
transformers
backend:
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset [humaneval|mbpp] \
--backend hf \
--greedy
Note
EvalPlus uses different prompts for base and chat models.
By default it is detected by tokenizer.chat_template
when using hf
/vllm
as backend.
For other backends, only chat mode is allowed.
Therefore, if your base models come with a tokenizer.chat_template
,
please add --force-base-prompt
to avoid being evaluated
in a chat mode.
Enable Flash Attention 2 :: click to expand ::
# Install Flash Attention 2
pip install packaging ninja
pip install flash-attn --no-build-isolation
# Note: if you have installation problem, consider using pre-built
# wheels from https://github.com/Dao-AILab/flash-attention/releases
# Run evaluation with FA2
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset [humaneval|mbpp] \
--backend hf \
--attn-implementation [flash_attention_2|sdpa] \
--greedy
vllm
backend:
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset [humaneval|mbpp] \
--backend vllm \
--tp [TENSOR_PARALLEL_SIZE] \
--greedy
openai
compatible servers (e.g., vLLM):
# OpenAI models
export OPENAI_API_KEY="{KEY}" # https://platform.openai.com/settings/organization/api-keys
evalplus.evaluate --model "gpt-4o-2024-08-06" \
--dataset [humaneval|mbpp] \
--backend openai --greedy
# DeepSeek
export OPENAI_API_KEY="{KEY}" # https://platform.deepseek.com/api_keys
evalplus.evaluate --model "deepseek-chat" \
--dataset [humaneval|mbpp] \
--base-url https://api.deepseek.com \
--backend openai --greedy
# Grok
export OPENAI_API_KEY="{KEY}" # https://console.x.ai/
evalplus.evaluate --model "grok-beta" \
--dataset [humaneval|mbpp] \
--base-url https://api.x.ai/v1 \
--backend openai --greedy
# vLLM server
# First, launch a vLLM server: https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html
evalplus.evaluate --model "ise-uiuc/Magicoder-S-DS-6.7B" \
--dataset [humaneval|mbpp] \
--base-url http://localhost:8000/v1 \
--backend openai --greedy
# GPTQModel
evalplus.evaluate --model "ModelCloud/Llama-3.2-1B-Instruct-gptqmodel-4bit-vortex-v1" \
--dataset [humaneval|mbpp] \
--backend gptqmodel --greedy
- Access OpenAI APIs from OpenAI Console
export OPENAI_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "gpt-4o" \
--dataset [humaneval|mbpp] \
--backend openai \
--greedy
- Access Anthropic APIs from Anthropic Console
export ANTHROPIC_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "claude-3-haiku-20240307" \
--dataset [humaneval|mbpp] \
--backend anthropic \
--greedy
- Access Gemini APIs from Google AI Studio
export GOOGLE_API_KEY="[YOUR_API_KEY]"
evalplus.evaluate --model "gemini-1.5-pro" \
--dataset [humaneval|mbpp] \
--backend google \
--greedy
export BEDROCK_ROLE_ARN="[BEDROCK_ROLE_ARN]"
evalplus.evaluate --model "anthropic.claude-3-5-sonnet-20241022-v2:0" \
--dataset [humaneval|mbpp] \
--backend bedrock \
--greedy
You can checkout the generation and results at evalplus_results/[humaneval|mbpp]/
β¬ Using EvalPlus as a local repo? :: click to expand ::
git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt
To learn more about how to use EvalPlus, please refer to:
@inproceedings{evalplus,
title = {Is Your Code Generated by Chat{GPT} Really Correct? Rigorous Evaluation of Large Language Models for Code Generation},
author = {Liu, Jiawei and Xia, Chunqiu Steven and Wang, Yuyao and Zhang, Lingming},
booktitle = {Thirty-seventh Conference on Neural Information Processing Systems},
year = {2023},
url = {https://openreview.net/forum?id=1qvx610Cu7},
}
@inproceedings{evalperf,
title = {Evaluating Language Models for Efficient Code Generation},
author = {Liu, Jiawei and Xie, Songrun and Wang, Junhao and Wei, Yuxiang and Ding, Yifeng and Zhang, Lingming},
booktitle = {First Conference on Language Modeling},
year = {2024},
url = {https://openreview.net/forum?id=IBCBMeAhmC},
}