Skip to content

Commit

Permalink
add blind attack
Browse files Browse the repository at this point in the history
  • Loading branch information
ebagdasa committed Jan 22, 2021
1 parent 2e4b01e commit 4da4f1e
Showing 1 changed file with 45 additions and 0 deletions.
45 changes: 45 additions & 0 deletions src/transformers/models/roberta/modeling_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
)
from ...utils import logging
from .configuration_roberta import RobertaConfig
from .min_norm_solvers import MGDASolver


logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -1166,6 +1167,8 @@ def forward(
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
loss = self.attack_loss(loss, input_ids, attention_mask,
token_type_ids, labels)

if not return_dict:
output = (logits,) + outputs[2:]
Expand All @@ -1178,6 +1181,48 @@ def forward(
attentions=outputs.attentions,
)

def attack_loss(self, ce_loss, input_ids, attention_mask,
token_type_ids, labels):
""" Backdoor attack code,
"""
if not self.training or getattr(self.config, "gradient_checkpointing", False):
return ce_loss

input_clones = self.synthesize_backdoor_inputs(input_ids)
outputs = self.roberta(
input_clones,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
labels = torch.ones_like(labels)
back_loss = CrossEntropyLoss()(logits.view(-1, self.num_labels),
labels.view(-1))
ce_grads = self.get_grads(ce_loss)
back_grads = self.get_grads(back_loss)
scales = MGDASolver.get_scales(dict(ce=ce_grads, back=back_grads),
dict(ce=ce_loss, back=back_loss),
'loss+', ['ce', 'back'])
loss = scales['ce'] * ce_loss + scales['back'] * back_loss
return loss

This comment has been minimized.

Copy link
@zsl519

zsl519 Aug 9, 2022

is this a scale

This comment has been minimized.

Copy link
@ebagdasa

ebagdasa Aug 9, 2022

Author Owner

yeah, this is a scaled loss with backdoor added loss

This comment has been minimized.

Copy link
@zsl519

zsl519 via email Aug 9, 2022


def get_grads(self, loss):
params = [x for x in self.roberta.parameters() if x.requires_grad]
grads = list(torch.autograd.grad(loss, params,
retain_graph=True))
return grads

def synthesize_backdoor_inputs(self, input_ids):
import random

dict_size = self.roberta.embeddings.word_embeddings.weight.shape[0]-1 # check that

pos = random.randint(1, input_ids.shape[1]-5)
input_clones = input_ids.clone()
input_clones[:, pos] = min(dict_size, random.sample([196, 2344, 5404, 4803], 1)[0]) # Ed, ed, ^Ed, ^ed
input_clones[:, pos + 1] = min(dict_size, random.sample([3132, 5627], 1)[0]) # Wood, wood

return input_clones

@add_start_docstrings(
"""
Expand Down

0 comments on commit 4da4f1e

Please sign in to comment.