-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
45 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -47,6 +47,7 @@ | |
) | ||
from ...utils import logging | ||
from .configuration_roberta import RobertaConfig | ||
from .min_norm_solvers import MGDASolver | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
@@ -1166,6 +1167,8 @@ def forward( | |
else: | ||
loss_fct = CrossEntropyLoss() | ||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | ||
loss = self.attack_loss(loss, input_ids, attention_mask, | ||
token_type_ids, labels) | ||
|
||
if not return_dict: | ||
output = (logits,) + outputs[2:] | ||
|
@@ -1178,6 +1181,48 @@ def forward( | |
attentions=outputs.attentions, | ||
) | ||
|
||
def attack_loss(self, ce_loss, input_ids, attention_mask, | ||
token_type_ids, labels): | ||
""" Backdoor attack code, | ||
""" | ||
if not self.training or getattr(self.config, "gradient_checkpointing", False): | ||
return ce_loss | ||
|
||
input_clones = self.synthesize_backdoor_inputs(input_ids) | ||
outputs = self.roberta( | ||
input_clones, | ||
attention_mask=attention_mask, | ||
token_type_ids=token_type_ids) | ||
sequence_output = outputs[0] | ||
logits = self.classifier(sequence_output) | ||
labels = torch.ones_like(labels) | ||
back_loss = CrossEntropyLoss()(logits.view(-1, self.num_labels), | ||
labels.view(-1)) | ||
ce_grads = self.get_grads(ce_loss) | ||
back_grads = self.get_grads(back_loss) | ||
scales = MGDASolver.get_scales(dict(ce=ce_grads, back=back_grads), | ||
dict(ce=ce_loss, back=back_loss), | ||
'loss+', ['ce', 'back']) | ||
loss = scales['ce'] * ce_loss + scales['back'] * back_loss | ||
return loss | ||
This comment has been minimized.
Sorry, something went wrong.
This comment has been minimized.
Sorry, something went wrong.
This comment has been minimized.
Sorry, something went wrong.
zsl519
via email
|
||
|
||
def get_grads(self, loss): | ||
params = [x for x in self.roberta.parameters() if x.requires_grad] | ||
grads = list(torch.autograd.grad(loss, params, | ||
retain_graph=True)) | ||
return grads | ||
|
||
def synthesize_backdoor_inputs(self, input_ids): | ||
import random | ||
|
||
dict_size = self.roberta.embeddings.word_embeddings.weight.shape[0]-1 # check that | ||
|
||
pos = random.randint(1, input_ids.shape[1]-5) | ||
input_clones = input_ids.clone() | ||
input_clones[:, pos] = min(dict_size, random.sample([196, 2344, 5404, 4803], 1)[0]) # Ed, ed, ^Ed, ^ed | ||
input_clones[:, pos + 1] = min(dict_size, random.sample([3132, 5627], 1)[0]) # Wood, wood | ||
|
||
return input_clones | ||
|
||
@add_start_docstrings( | ||
""" | ||
|
is this a scale