#!/usr/bin/env python3 # # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # import cv2 import argparse from jetson_utils import (cudaFromNumpy, cudaAllocMapped, cudaConvertColor, cudaDeviceSynchronize, saveImage) # parse the command line parser = argparse.ArgumentParser(description='Convert an image from OpenCV to CUDA') parser.add_argument("file_in", type=str, default="images/granny_smith_1.jpg", nargs='?', help="filename of the input image to process") parser.add_argument("file_out", type=str, default="cuda-from-cv.jpg", nargs='?', help="filename of the output image to save") opt = parser.parse_args() # load the image cv_img = cv2.imread(opt.file_in) if cv_img is None: raise IOError(f"failed to load {file_in}") print('OpenCV image size: ' + str(cv_img.shape)) print('OpenCV image type: ' + str(cv_img.dtype)) # convert to CUDA (cv2 images are numpy arrays, in BGR format) bgr_img = cudaFromNumpy(cv_img, isBGR=True) print('BGR image: ') print(bgr_img) # convert from BGR -> RGB rgb_img = cudaAllocMapped(width=bgr_img.width, height=bgr_img.height, format='rgb8') cudaConvertColor(bgr_img, rgb_img) print('RGB image: ') print(rgb_img) # save the image if opt.file_out is not None: cudaDeviceSynchronize() saveImage(opt.file_out, rgb_img) print("saved {:d}x{:d} test image to '{:s}'".format(rgb_img.width, rgb_img.height, opt.file_out))