-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUnreconciled-DO_F19_comments.R
303 lines (234 loc) · 10.2 KB
/
Unreconciled-DO_F19_comments.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# GoMMAPPS Unreconciled Double Observer Code
# Survey: Feb 2019
# Script matches and codes unreconciled double observer records
# need AmbiguousGrpsFunction.R and Matching-Function.R
#Libraries
library(dplyr)
library(tidyr)
library(reshape)
library(stringr)
#Load data and clean up
setwd()
#Survey data
DataF19 <- read.csv(file = "./gommapps_aerialSurvey_Feb2019.csv", header = TRUE, stringsAsFactors = F)
# (Step 1 = create ordered data frame
# Order data
OrderF19 <- DataF19[
with(DataF19, order(year, month, day, secs)),
]
# coding to ensure any bird observations with same time stamp as Beg or End are within Beg/End rows:
OrderF19$alpha.order <- OrderF19$species
OrderF19$alpha.order[OrderF19$alpha.order == "BEGCOUNT"] <- "aaa"
OrderF19$alpha.order[OrderF19$alpha.order == "ENDCOUNT"] <- "zzz"
OrderF19 <- arrange(OrderF19, year, month, day, hexagon, transect, str_sub(seat,1,1), secs, alpha.order, count) %>% select(-GPSerror, -alpha.order)
# Step 2 Code each transect BEG/END section uniquely:
# create transect-side code (tranID) and determine number of observers on side for each tranID:
data2obs <- OrderF19 %>% group_by(year, month, day, hexagon, transect, side = str_sub(seat,1,1)) %>%
mutate(tranID = group_indices(), obs = n_distinct(initials)) %>%
ungroup()
# Step 3 (two observers must be counting!)
data2obs <- data2obs %>% filter(obs == 2) %>% select(-obs, -voice) # drop transect-sides with only one observer
# Step 4 (create a cumulative index of beg/end records for each transect)
data2obs <- data2obs %>% mutate(begend = ifelse(species %in% c("BEGCOUNT","ENDCOUNT"), 1, 0)) %>%
group_by(tranID) %>% mutate(begend = cumsum(begend))
# Drop observations when only one person is counting (both need to say BEG, and one cannot have said END)
rows2keep <- max(data2obs$begend)-4*c(1:(max(data2obs$begend)/4))+2 # keep all rows btwn 2nd BEG and 1st END pairs
# Step 5
options(digits = 7)
data2obs$secs <- as.numeric(data2obs$secs)
# interim step to group observations within 10 secs .... drop BEGCOUNT and other non-bird records
#and assign first obs deltaTime = 10, so it is coded group = 1
data2obs <- data2obs %>% filter((begend %in% rows2keep) & (species != "BEGCOUNT")) %>%
mutate(deltaTime = c(10,diff(secs)), grp = ifelse(deltaTime > 10, 1, 0))
# Step 6
# cumulate index to create "within 10 sec" grouping variable for transect sections:
data2obs <- data2obs %>% group_by(tranID, begend) %>% mutate(grp = cumsum(grp))
# Step 7 Assign all observations in groups with data for only one observer as "noMatch"
data2obs <- data2obs %>% group_by(tranID, begend, grp) %>%
mutate(num.obs = length(unique(initials)), reconcile = ifelse(num.obs == 1, "noMatch", "TBD")) %>%
ungroup()
# Add binned counts
data2obs$bin <- NA
for (i in 1:length(data2obs$count)){
if (data2obs$count[i] == 0)
data2obs$bin[i] <- 1
if (data2obs$count[i] > 0 & data2obs$count[i] < 11)
data2obs$bin[i] <- 2
if (data2obs$count[i] > 10 & data2obs$count[i] < 101)
data2obs$bin[i] <- 3
if (data2obs$count[i] > 100 & data2obs$count[i] < 1001)
data2obs$bin[i] <- 4
if (data2obs$count[i] > 1000)
data2obs$bin[i] <- 5
}
# Step 8
# process species data
#species lists
speciesD <- read.csv(file = "./specieslists.csv", header = TRUE, stringsAsFactors = F)
spcode <- speciesD$MASTERLIST
sptype <- speciesD[,1:27]
#first create generic species codes for all species codes
spgroup <- matrix(data = "BIRD", nrow = 151, ncol = 1)
for(i in 1:length(spgroup)){
if(spcode[i] %in% speciesD$TERNS)
spgroup[i] <- "LARID"
if(spcode[i] %in% speciesD$GULLS)
spgroup[i] <- "LARID"
if(spcode[i] %in% speciesD$CORMORANTS)
spgroup[i] <- "CORM"
if(spcode[i] %in% speciesD$MERGANSERS)
spgroup[i] <- "MERG"
if(spcode[i] %in% speciesD$LOONS)
spgroup[i] <- "LOON"
if(spcode[i] %in% speciesD$SCAUP)
spgroup[i] <- "SCAU"
if(spcode[i] %in% speciesD$SCOTERS)
spgroup[i] <- "SCOT"
if(spcode[i] %in% speciesD$PELICANS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$HERONS.EGRETS)
spgroup[i] <- "HERO"
if(spcode[i] %in% speciesD$PHALAROPES)
spgroup[i] <- "PHAL"
if(spcode[i] %in% speciesD$TROPICBIRDS)
spgroup[i] <- "TROP"
if(spcode[i] %in% speciesD$BOOBYS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$GREBES)
spgroup[i] <- "GREB"
if(spcode[i] %in% speciesD$IBIS)
spgroup[i] <- "IBIS"
if(spcode[i] %in% speciesD$NODDYS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$PETRELS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$JAEGERS)
spgroup[i] <- "JAEG"
if(spcode[i] %in% speciesD$SHEARWATERS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$TEALS)
spgroup[i] <- "TEAL"
if(spcode[i] %in% speciesD$GEESE)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$DUCKS)
spgroup[i] <- "DUCK"
if(spcode[i] == "NOGA")
spgroup[i] <- spcode[i]
}
spcode
# now add generic species code:
genericSp <- data.frame(species = spcode,
genericSp = spgroup,
stringsAsFactors = F)
# add a row for plain BIRD records
bird <- c("BIRD", "BIRD")
genericSp <- rbind(genericSp, bird)
# add generic and calculate total birds counted, also create an index so new reconcile value can be assigned to correct record:
data2obs <- left_join(data2obs, genericSp)
data2obs <- data2obs %>% mutate(index = row.names(data2obs)) # create unique index needed for matching code
# subset data to groups with birds for both observers, create front/rear seat code
x <- data2obs %>% filter(num.obs == 2) %>% mutate(pos = str_sub(seat,2,2))
# flag groups with multiple species in same generic group and generic code
# Seems like there are no such cases
x <- x %>% group_by(tranID, begend, grp) %>% mutate(ambigGrp = tibble(species, genericSp) %>% ambiguousGrps.fn) %>% ungroup()
# mutate will not take data frame with group_by so create data frame within mutate and then it will be group_by values only .... apply function to that
y <- x %>% group_by(tranID, begend, grp) %>% mutate(reconcile = tibble(pos, species, genericSp, count, bin, ambigGrp, index) %>% BinMatching.fn)
y <- ungroup(y)
# Step 9 .. merge reconciled grps to full list
data2obs <- left_join(data2obs, y %>% select(index, reconcile2 = reconcile, ambigGrp)) %>%
mutate(reconcile = ifelse(reconcile == "TBD", reconcile2, reconcile), ambigGrp = replace_na(ambigGrp, "no")) %>%
select(-reconcile2)
# omit non-bird records
data2obs <- data2obs[!is.na(data2obs$genericSp),]
# tally up matching column
resultsF19 <- data2obs %>% group_by(reconcile) %>% tally()
resultsF19
#PerfectMatch = perfectMatch + countMatchSp
633+18
#PerfectGenericMatch = countMatchGeneric + perfectBinMatch(0) = 85
#noMatch = noMatch + noMatchgrp
563+35
#-----------------------------------------------------------------------------#
# detection checks
#crew member detection
crewF19 <-data2obs %>% group_by(initials, hexagon, reconcile) %>% tally()
crewF19
length(unique((crewF19$initials)))
# split by crew initials to match up double observers
split <- split(crewF19, crewF19$initials)
# make each one a df
# to a data.frame
dwd <- as.data.frame(split[[1]])
jsw <- as.data.frame(split[[2]])
nlw <- as.data.frame(split[[3]])
phs <- as.data.frame(split[[4]])
rrw <- as.data.frame(split[[5]])
sde <- as.data.frame(split[[6]])
#match up double observers to compare (from plane 723)
phs.rrw <- merge(phs, rrw, by = "hexagon")
phs.sde <- merge(phs, sde, by = "hexagon")
rrw.sde <- merge(rrw, sde, by = "hexagon")
#obs 2 (sde)**pilot
sde1 <-phs.sde %>% group_by(reconcile.y) %>% tally()
sde1
sde2 <- rrw.sde %>% group_by(reconcile.y) %>% tally()
sde2
#obs2 totals (sde)
obs2F19 <- (27+14)/(347+53) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs4
rrw1 <-rrw.sde %>% group_by(reconcile.x) %>% tally()
rrw1
rrw2 <-phs.rrw %>% group_by(reconcile.y) %>% tally()
rrw2
#obs4 total
#obs4 totals rrw
obs4F19 <- (10+69)/(53+347) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs7
phs1 <- phs.rrw %>% group_by(reconcile.x) %>% tally()
phs1
phs2 <- phs.sde %>% group_by(reconcile.x) %>% tally()
phs2
#totals phs
obs7F19 <- (71+30)/(347+181) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#match up double observers to compare (from plane 736)
dwd.jsw <- merge(dwd, jsw, by = "hexagon")
dwd.nlw <- merge(dwd, nlw, by = "hexagon")
nlw.jsw <- merge(nlw, jsw, by = "hexagon")
#obs 6 (jsw)**pilot
jsw1 <- dwd.jsw %>% group_by(reconcile.y) %>% tally()
jsw1
jsw2 <- nlw.jsw %>% group_by(reconcile.y) %>% tally()
jsw2
#obs6 totals
obs6F19 <- (28+10)/(111+17) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs8 (dwd)
dwd1 <- dwd.jsw %>% group_by(reconcile.x) %>% tally()
dwd1
dwd2 <- dwd.nlw %>% group_by(reconcile.x) %>% tally()
dwd2
#obs8 total
obs8F19 <- (26+58)/(111+203) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs9 (nlw)
nlw1 <- nlw.jsw %>% group_by(reconcile.x) %>% tally()
nlw1
nlw2 <- dwd.nlw %>% group_by(reconcile.y) %>% tally()
nlw2
#totals obs9
obs9F19 <- (11+61)/(17+203) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#by plane detection
planeF19 <- data2obs %>% group_by(tailNo, reconcile) %>% tally()
planeF19
#----------------------------------------------------------------------------#
#counting checks
#1 individual
countF19 <- filter(data2obs, count == 1)
countF19 %>% group_by(reconcile) %>% tally()
#less than 6
countF19 <- filter(data2obs, count < 6)
countF19 %>% group_by(reconcile) %>% tally()
#between 6-30
countF19 <- filter(data2obs, count > 5 & count < 31)
countF19 %>% group_by(reconcile) %>% tally()
#>30
countF19 <- filter(data2obs, count > 30)
countF19 %>% group_by(reconcile) %>% tally()