Skip to content

Latest commit

 

History

History

ImageProcessingFundamentals

计算机视觉基础:图像处理(上)

基本信息

  • 贡献人员:王程伟、任乔牧、张强、李芝翔
  • 学习周期:12天,每天平均花费时间2小时-5小时不等,根据个人学习接受能力强弱有所浮动。
  • 学习形式:理论学习 + 练习
  • 人群定位:具备一定编程基础,了解OpenCV,有学习和梳理图像处理算法的需求。
  • 先修内容:无
  • 难度系数:中

任务安排

Task01:OpenCV框架、图像插值算法—图像缩放(2天)

理论部分

  • 了解OpenCV的框架组成
  • 掌握基本的图像插值算法
    • 最近邻插值算法:掌握OpenCV的API、理解算法原理
    • 双线性插值算法:掌握OpenCV的API、理解算法原理

练习部分

  • 调用OpenCV插值算法的API,使用不同的插值算法完成图像的缩放
  • 不调用OpenCV插值算法的API,基于OpenCV自己实现两种插值算法并完成图像的缩放(可选)

Task02:几何变换(2天)

理论部分

  • 掌握图像几何变换(平移、旋转)的原理

练习部分

  • 利用OpenCV实现图像的几何变换(平移、旋转)
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)

Task03:彩色空间互转(2天)

理论部分

  • 掌握RGB与灰度图互转的原理
  • 掌握RGB与HSV空间互转的原理

练习部分

  • 利用OpenCV实现图像的RGB与灰度图互转
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)
  • 利用OpenCV实现图像的RGB与HSV空间互转
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)

Task04:图像滤波(2天)

理论部分

  • 掌握均值滤波和方框滤波的原理
  • 掌握高斯滤波的原理

练习部分

  • 利用OpenCV对图像进行均值滤波和方框滤波
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)
  • 利用OpenCV对图像进行高斯滤波
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现 (可选)
  • 分析和理解不同滤波算法的适用场合和性能

Task05:图像分割/二值化(2天)

理论部分

  • 掌握大津法(最大类间方差法)的原理
  • 掌握自适应阈值分割法(adaptiveThreshold)的原理

练习部分

  • 利用OpenCV实现大津法(最大类间方差法),对图像进行阈值分割
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)
  • 利用OpenCV实现自适应阈值分割法,对图像进行阈值分割
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)

Task06:边缘检测(2天)

理论部分

  • 掌握Sobel边缘检测的原理
  • 掌握Canny边缘检测的原理

练习部分

  • 利用OpenCV实现Sobel边缘检测
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)
  • 利用OpenCV实现Canny边缘检测
    • 调用OpenCV对应的API
    • 不调用OpenCV对应的API,利用OpenCV自己实现(可选)
  • 分析和理解不同边缘检测算法的适用场合和性能

Task07:兴趣扩展项目(可选)

参考资料

计算机视觉基础:图像处理(下)

基本信息

  • 贡献人员:王程伟、张强、李芝翔
  • 学习周期:15天,每天平均花费时间 2小时-5小时不等,根据个人学习接受能力强弱有所浮动。
  • 学习形式:理论学习 + 练习
  • 人群定位:具备一定编程基础,了解 OpenCV,有学习和梳理图像处理算法的需求,参与过图像处理(上)组队学习者优先。
  • 先修内容:计算机视觉基础:图像处理(上)
  • 难度系数:中

任务安排

Task01:Harris特征点检测器-兴趣点检测(3天)

理论部分

  • 掌握Harris特征点检测的原理

练习部分

  • 使用OpenCV集成的Harris特征点检测器实现图像兴趣点检测

Task02:LBP特征描述算子-人脸检测(4天)

理论部分

  • 掌握LBP特征描述算子原理

练习部分

  • 使用OpenCV的LBP检测器完成人脸检测任务

Task03:Harr特征描述算子-人脸检测(4天)

理论部分

  • 掌握Harr特征描述算子原理

练习部分

  • 使用OpenCV的Harr检测器完成人脸检测任务

Task04:HOG特征描述算子-行人检测(4天)

理论部分

  • 掌握HOG特征描述算子的原理

练习部分

  • 使用OpenCV预训练的HOG+SVM检测器完成行人检测任务

参考资料