# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ MaskFormer Training Script. This script is a simplified version of the training script in detectron2/tools. """ try: # ignore ShapelyDeprecationWarning from fvcore from shapely.errors import ShapelyDeprecationWarning import warnings warnings.filterwarnings("ignore") warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning) except: pass import copy import itertools import logging import os from collections import OrderedDict from typing import Any, Dict, List, Set import torch import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, build_detection_train_loader from detectron2.engine import ( DefaultTrainer, default_argument_parser, default_setup, launch, ) from detectron2.evaluation import ( COCOEvaluator, DatasetEvaluators, SemSegEvaluator, verify_results, ) from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler from detectron2.solver.build import maybe_add_gradient_clipping from detectron2.utils.logger import setup_logger from d2fp import ( SemanticSegmentorWithTTA, ParsingWithTTA, D2FPSemanticHPDatasetMapper, D2FPParsingDatasetMapper, D2FPParsingLSJDatasetMapper, ParsingEvaluator, WandBWriter, add_d2fp_config, build_detection_test_loader, load_image_into_numpy_array, ) from d2fp.modeling.backbone.utils import get_vit_lr_decay_rate class Trainer(DefaultTrainer): """ Extension of the Trainer class adapted to MaskFormer. """ @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type # parsing if evaluator_type == "parsing": evaluator_list.append( ParsingEvaluator( dataset_name, cfg.MODEL.D2FP.TEST.PARSING_INS_SCORE_THR, output_dir=output_folder, parsing_metrics=cfg.MODEL.D2FP.TEST.METRICS ) ) # semantic segmentation if evaluator_type == "sem_seg": evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, sem_seg_loading_fn=load_image_into_numpy_array ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def build_train_loader(cls, cfg): # single human parsing dataset mapper if cfg.INPUT.DATASET_MAPPER_NAME == "d2fp_semantic_hp": mapper = D2FPSemanticHPDatasetMapper(cfg, True) return build_detection_train_loader(cfg, mapper=mapper) # multiple human parsing dataset mapper elif cfg.INPUT.DATASET_MAPPER_NAME == "d2fp_parsing": mapper = D2FPParsingDatasetMapper(cfg, True) return build_detection_train_loader(cfg, mapper=mapper) # multiple human parsing dataset mapper with lsj elif cfg.INPUT.DATASET_MAPPER_NAME == "d2fp_parsing_lsj": mapper = D2FPParsingLSJDatasetMapper(cfg, True) return build_detection_train_loader(cfg, mapper=mapper) else: mapper = None return build_detection_train_loader(cfg, mapper=mapper) @classmethod def build_lr_scheduler(cls, cfg, optimizer): """ It now calls :func:`detectron2.solver.build_lr_scheduler`. Overwrite it if you'd like a different scheduler. """ return build_lr_scheduler(cfg, optimizer) @classmethod def build_optimizer(cls, cfg, model): num_layers = cfg.MODEL.VIT.DEPTH lr_decay_rate = cfg.MODEL.VIT.LR_DECAY_RATE assert lr_decay_rate <= 1.0 weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED defaults = {} defaults["lr"] = cfg.SOLVER.BASE_LR defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY norm_module_types = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ) params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for module_name, module in model.named_modules(): for module_param_name, value in module.named_parameters(recurse=False): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) hyperparams = copy.copy(defaults) if "backbone" in module_name: hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER if lr_decay_rate != 1.0: hyperparams["lr"] *= get_vit_lr_decay_rate( f"{module_name}.{module_param_name}", num_layers=num_layers, lr_decay_rate=lr_decay_rate ) print(f"{module_name}.{module_param_name}", hyperparams["lr"], value.numel(), value.requires_grad) if ( "relative_position_bias_table" in module_param_name or "absolute_pos_embed" in module_param_name ): print(module_param_name) hyperparams["weight_decay"] = 0.0 if isinstance(module, norm_module_types): hyperparams["weight_decay"] = weight_decay_norm if isinstance(module, torch.nn.Embedding): hyperparams["weight_decay"] = weight_decay_embed params.append({"params": [value], **hyperparams}) def maybe_add_full_model_gradient_clipping(optim): # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM ) elif optimizer_type == "ADAMW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer @classmethod def build_test_loader(cls, cfg, dataset_name): """ It now calls :func:`detectron2.data.build_detection_test_loader`. Overwrite func:`detectron2.data.build_detection_test_loader`, to adapt the single parsing test loader for lip and ATR, etc. """ return build_detection_test_loader(cfg, dataset_name) @classmethod def test_with_TTA(cls, cfg, model): logger = logging.getLogger("detectron2.trainer") # In the end of training, run an evaluation with TTA. logger.info("Running inference with test-time augmentation ...") if cfg.MODEL.D2FP.TEST.PARSING_ON: model = ParsingWithTTA(cfg, model) else: model = SemanticSegmentorWithTTA(cfg, model) evaluators = [ cls.build_evaluator( cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") ) for name in cfg.DATASETS.TEST ] res = cls.test(cfg, model, evaluators) res = OrderedDict({k + "_TTA": v for k, v in res.items()}) return res def build_writers(self): default_writers = super(Trainer, self).build_writers() if self.cfg.WANDB.ENABLED: default_writers.append(WandBWriter(self.cfg)) return default_writers def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() # for poly lr schedule add_deeplab_config(cfg) add_d2fp_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) # Setup logger for "d2fp" module setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="d2fp") return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if cfg.TEST.AUG.ENABLED: res.update(Trainer.test_with_TTA(cfg, model)) if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )