#!/usr/bin/env python # @lint-avoid-python-3-compatibility-imports # # runqslower Trace long process scheduling delays. # For Linux, uses BCC, eBPF. # # This script traces high scheduling delays between tasks being # ready to run and them running on CPU after that. # # USAGE: runqslower [-p PID] [-t TID] [-P] [min_us] # # REQUIRES: Linux 4.9+ (BPF_PROG_TYPE_PERF_EVENT support). # # This measures the time a task spends waiting on a run queue for a turn # on-CPU, and shows this time as a individual events. This time should be small, # but a task may need to wait its turn due to CPU load. # # This measures two types of run queue latency: # 1. The time from a task being enqueued on a run queue to its context switch # and execution. This traces ttwu_do_wakeup(), wake_up_new_task() -> # finish_task_switch() with either raw tracepoints (if supported) or kprobes # and instruments the run queue latency after a voluntary context switch. # 2. The time from when a task was involuntary context switched and still # in the runnable state, to when it next executed. This is instrumented # from finish_task_switch() alone. # # Copyright 2016 Cloudflare, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # 02-May-2018 Ivan Babrou Created this. # 18-Nov-2019 Gergely Bod BUG fix: Use bpf_probe_read_kernel_str() to extract the # process name from 'task_struct* next' in raw tp code. # bpf_get_current_comm() operates on the current task # which might already be different than 'next'. from __future__ import print_function from bcc import BPF import argparse from time import strftime # arguments examples = """examples: ./runqslower # trace run queue latency higher than 10000 us (default) ./runqslower 1000 # trace run queue latency higher than 1000 us ./runqslower -p 123 # trace pid 123 ./runqslower -t 123 # trace tid 123 (use for threads only) ./runqslower -P # also show previous task comm and TID """ parser = argparse.ArgumentParser( description="Trace high run queue latency", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("min_us", nargs="?", default='10000', help="minimum run queue latency to trace, in us (default 10000)") parser.add_argument("-P", "--previous", action="store_true", help="also show previous task name and TID") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) thread_group = parser.add_mutually_exclusive_group() thread_group.add_argument("-p", "--pid", metavar="PID", dest="pid", help="trace this PID only", type=int) thread_group.add_argument("-t", "--tid", metavar="TID", dest="tid", help="trace this TID only", type=int) args = parser.parse_args() min_us = int(args.min_us) debug = 0 # define BPF program bpf_text = """ #include #include #include #include BPF_ARRAY(start, u64, MAX_PID); struct data_t { u32 pid; u32 prev_pid; char task[TASK_COMM_LEN]; char prev_task[TASK_COMM_LEN]; u64 delta_us; }; BPF_PERF_OUTPUT(events); // record enqueue timestamp static int trace_enqueue(u32 tgid, u32 pid) { if (FILTER_PID || FILTER_TGID || pid == 0) return 0; u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); return 0; } """ bpf_text_kprobe = """ int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p) { return trace_enqueue(p->tgid, p->pid); } int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p, int wake_flags) { return trace_enqueue(p->tgid, p->pid); } // calculate latency int trace_run(struct pt_regs *ctx, struct task_struct *prev) { u32 pid, tgid; // ivcsw: treat like an enqueue event and store timestamp if (prev->STATE_FIELD == TASK_RUNNING) { tgid = prev->tgid; pid = prev->pid; u64 ts = bpf_ktime_get_ns(); if (pid != 0) { if (!(FILTER_PID) && !(FILTER_TGID)) { start.update(&pid, &ts); } } } pid = bpf_get_current_pid_tgid(); u64 *tsp, delta_us; // fetch timestamp and calculate delta tsp = start.lookup(&pid); if ((tsp == 0) || (*tsp == 0)) { return 0; // missed enqueue } delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; if (FILTER_US) return 0; struct data_t data = {}; data.pid = pid; data.prev_pid = prev->pid; data.delta_us = delta_us; bpf_get_current_comm(&data.task, sizeof(data.task)); bpf_probe_read_kernel_str(&data.prev_task, sizeof(data.prev_task), prev->comm); // output events.perf_submit(ctx, &data, sizeof(data)); start.delete(&pid); return 0; } """ bpf_text_raw_tp = """ RAW_TRACEPOINT_PROBE(sched_wakeup) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; return trace_enqueue(p->tgid, p->pid); } RAW_TRACEPOINT_PROBE(sched_wakeup_new) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; u32 tgid, pid; bpf_probe_read_kernel(&tgid, sizeof(tgid), &p->tgid); bpf_probe_read_kernel(&pid, sizeof(pid), &p->pid); return trace_enqueue(tgid, pid); } RAW_TRACEPOINT_PROBE(sched_switch) { // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next) struct task_struct *prev = (struct task_struct *)ctx->args[1]; struct task_struct *next= (struct task_struct *)ctx->args[2]; u32 tgid, pid; long state; // ivcsw: treat like an enqueue event and store timestamp bpf_probe_read_kernel(&state, sizeof(long), (const void *)&prev->STATE_FIELD); bpf_probe_read_kernel(&pid, sizeof(prev->pid), &prev->pid); if (state == TASK_RUNNING) { bpf_probe_read_kernel(&tgid, sizeof(prev->tgid), &prev->tgid); u64 ts = bpf_ktime_get_ns(); if (pid != 0) { if (!(FILTER_PID) && !(FILTER_TGID)) { start.update(&pid, &ts); } } } u32 prev_pid; u64 *tsp, delta_us; prev_pid = pid; bpf_probe_read_kernel(&pid, sizeof(next->pid), &next->pid); // fetch timestamp and calculate delta tsp = start.lookup(&pid); if ((tsp == 0) || (*tsp == 0)) { return 0; // missed enqueue } delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; if (FILTER_US) return 0; struct data_t data = {}; data.pid = pid; data.prev_pid = prev_pid; data.delta_us = delta_us; bpf_probe_read_kernel_str(&data.task, sizeof(data.task), next->comm); bpf_probe_read_kernel_str(&data.prev_task, sizeof(data.prev_task), prev->comm); // output events.perf_submit(ctx, &data, sizeof(data)); start.delete(&pid); return 0; } """ is_support_raw_tp = BPF.support_raw_tracepoint() if is_support_raw_tp: bpf_text += bpf_text_raw_tp else: bpf_text += bpf_text_kprobe # code substitutions if BPF.kernel_struct_has_field(b'task_struct', b'__state') == 1: bpf_text = bpf_text.replace('STATE_FIELD', '__state') else: bpf_text = bpf_text.replace('STATE_FIELD', 'state') if min_us == 0: bpf_text = bpf_text.replace('FILTER_US', '0') else: bpf_text = bpf_text.replace('FILTER_US', 'delta_us <= %s' % str(min_us)) if args.tid: bpf_text = bpf_text.replace('FILTER_PID', 'pid != %s' % args.tid) else: bpf_text = bpf_text.replace('FILTER_PID', '0') if args.pid: bpf_text = bpf_text.replace('FILTER_TGID', 'tgid != %s' % args.pid) else: bpf_text = bpf_text.replace('FILTER_TGID', '0') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # process event def print_event(cpu, data, size): event = b["events"].event(data) if args.previous: print("%-8s %-16s %-6s %14s %-16s %-6s" % (strftime("%H:%M:%S"), event.task.decode('utf-8', 'replace'), event.pid, event.delta_us, event.prev_task.decode('utf-8', 'replace'), event.prev_pid)) else: print("%-8s %-16s %-6s %14s" % (strftime("%H:%M:%S"), event.task.decode('utf-8', 'replace'), event.pid, event.delta_us)) max_pid = int(open("/proc/sys/kernel/pid_max").read()) # load BPF program b = BPF(text=bpf_text, cflags=["-DMAX_PID=%d" % max_pid]) if not is_support_raw_tp: b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup") b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task") b.attach_kprobe(event_re="^finish_task_switch$|^finish_task_switch\.isra\.\d$", fn_name="trace_run") print("Tracing run queue latency higher than %d us" % min_us) if args.previous: print("%-8s %-16s %-6s %14s %-16s %-6s" % ("TIME", "COMM", "TID", "LAT(us)", "PREV COMM", "PREV TID")) else: print("%-8s %-16s %-6s %14s" % ("TIME", "COMM", "TID", "LAT(us)")) # read events b["events"].open_perf_buffer(print_event, page_cnt=64) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()