-
Notifications
You must be signed in to change notification settings - Fork 471
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Run anserini+BM25 baseline on PubMed and DBLP (#765)
* add script to convert and run pubmed and dblp * updated openresearch docs to add comparison table; update key terms result
- Loading branch information
1 parent
c429e29
commit 5b29d16
Showing
7 changed files
with
502 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
196 changes: 196 additions & 0 deletions
196
src/main/python/openresearch/convert_pubmed_dblp_to_anserini_format.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
import argparse | ||
import gzip | ||
import json | ||
import os | ||
import time | ||
from collections import defaultdict | ||
|
||
|
||
def clean(text): | ||
return text.replace('\n', ' ').replace('\t', ' ') | ||
|
||
|
||
def get_ids(start, end, year_ids): | ||
result = [] | ||
for year in range(start, end+1): | ||
result.extend(year_ids[year]) | ||
return set(result) | ||
|
||
|
||
def get_id_years(file_name, data_type): | ||
print('Collecting paper ids and their publication years...') | ||
year_ids = defaultdict(list) | ||
with open(file_name) as f: | ||
for line_num, line in enumerate(f): | ||
obj = json.loads(line.strip()) | ||
doc_id = obj['id'] | ||
if 'year' not in obj: | ||
continue | ||
year = int(obj['year']) | ||
|
||
year_ids[year].append(doc_id) | ||
if line_num % 1000000 == 0: | ||
print('Processed {} lines. Collected {} docs.'.format( | ||
line_num + 1, len(year_ids))) | ||
|
||
train_ranges = {'dblp': (1966, 2007), 'pubmed': (1966, 2008)} | ||
dev_ranges = {'dblp': (2008, 2008), 'pubmed': (2009, 2009)} | ||
test_ranges = {'dblp': (2009, 2011), 'pubmed': (2010, 2013)} | ||
|
||
train_ids = get_ids(train_ranges[data_type][0], train_ranges[data_type][1], year_ids) | ||
dev_ids = get_ids(dev_ranges[data_type][0], dev_ranges[data_type][1], year_ids) | ||
test_ids = get_ids(test_ranges[data_type][0], test_ranges[data_type][1], year_ids) | ||
|
||
num_train = len(train_ids) | ||
num_dev = len(dev_ids) | ||
num_test = len(test_ids) | ||
|
||
print('Collected {}, {}, {} papers for training, dev, and test sets.'.format( | ||
num_train, num_dev, num_test)) | ||
|
||
return train_ids, dev_ids, test_ids, year_ids | ||
|
||
|
||
def create_dataset(args): | ||
print('Converting data...') | ||
queries_files = {} | ||
qrels_files = {} | ||
for set_name in ['train', 'dev', 'test']: | ||
queries_filepath = os.path.join( | ||
args.output_folder, 'queries.{}.tsv'.format(set_name)) | ||
qrels_filepath = os.path.join( | ||
args.output_folder, 'qrels.{}'.format(set_name)) | ||
queries_files[set_name] = open(queries_filepath, 'w') | ||
qrels_files[set_name] = open(qrels_filepath, 'w') | ||
|
||
file_name = os.path.join(args.collection_path, 'corpus.json') | ||
|
||
train_ids, dev_ids, test_ids, year_ids = get_id_years( | ||
file_name=file_name, data_type=args.data_type) | ||
|
||
doc_ids = train_ids | dev_ids | test_ids | ||
|
||
# Write train_ids to file for future use | ||
candidates_file = open(os.path.join(args.output_folder, 'candidates.txt'), 'w') | ||
for train_id in train_ids: | ||
candidates_file.write(train_id+'\n') | ||
|
||
id_years = {} | ||
for y in year_ids: | ||
for i in year_ids[y]: | ||
id_years[i] = y | ||
|
||
n_docs = 0 | ||
file_index = 0 | ||
num_train = 0 | ||
num_dev = 0 | ||
num_test = 0 | ||
start_time = time.time() | ||
|
||
with open(file_name) as f: | ||
for line in f: | ||
obj = json.loads(line.strip()) | ||
doc_id = obj['id'] | ||
if doc_id not in doc_ids: | ||
continue | ||
if n_docs % args.max_docs_per_file == 0: | ||
if n_docs > 0: | ||
output_jsonl_file.close() | ||
output_path = os.path.join( | ||
args.output_folder, 'corpus/docs{:02d}.json'.format(file_index)) | ||
output_jsonl_file = open(output_path, 'w') | ||
file_index += 1 | ||
doc_text = '[Title]: {} [Abstract]: {}'.format( | ||
obj['title'], obj['abstract']) | ||
doc_text = clean(doc_text) | ||
output_dict = {'id': doc_id, 'contents': doc_text} | ||
output_jsonl_file.write(json.dumps(output_dict) + '\n') | ||
n_docs += 1 | ||
|
||
out_citations = obj['out_citations'] | ||
|
||
# Remove citations not in the corpus. | ||
out_citations = [ | ||
out_citation for out_citation in out_citations | ||
if out_citation in doc_ids | ||
] | ||
|
||
# Remove self citations. | ||
out_citations = [ | ||
out_citation for out_citation in out_citations | ||
if out_citation != doc_id | ||
] | ||
|
||
# Use only citations that have an older publication year than the citing | ||
# paper's or do not have an year. | ||
out_citations2 = [] | ||
for out_citation in out_citations: | ||
if out_citation in id_years: | ||
if id_years[out_citation] <= obj['year']: | ||
out_citations2.append(out_citation) | ||
out_citations = out_citations2 | ||
|
||
# Follow Bhagavatula's setting to restrict our citations candidates to train_ids only | ||
out_citations = set(out_citations) | ||
out_citations.intersection_update(train_ids) | ||
|
||
# Skip papers have out citations < 10. | ||
if len(out_citations) < 10: | ||
continue | ||
|
||
if doc_id in train_ids: | ||
set_name = 'train' | ||
num_train += 1 | ||
elif doc_id in dev_ids: | ||
set_name = 'dev' | ||
num_dev += 1 | ||
elif doc_id in test_ids: | ||
set_name = 'test' | ||
num_test += 1 | ||
|
||
queries_file = queries_files[set_name] | ||
qrels_file = qrels_files[set_name] | ||
|
||
doc_title = obj['title'] | ||
doc_title = clean(doc_title) | ||
if args.use_abstract_in_query: | ||
doc_abstract = clean(obj['abstract']) | ||
query = '[Title]: ' + doc_title + ' [Abstract]: ' + doc_abstract | ||
else: | ||
query = doc_title | ||
queries_file.write('{}\t{}\n'.format(doc_id, query)) | ||
for out_citation in out_citations: | ||
qrels_file.write('{} 0 {} 1\n'.format(doc_id, out_citation)) | ||
|
||
print('Examples: {} train, {} valid, {} test'.format( | ||
num_train, num_dev, num_test)) | ||
|
||
# Close queries and qrels files. | ||
for queries_file in queries_files.values(): | ||
queries_file.close() | ||
for qrels_file in qrels_files.values(): | ||
qrels_file.close() | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description='Converts DBLP Corpus json collection to ' | ||
'Anserini\'s jsonl files.') | ||
parser.add_argument('--collection_path', required=True, | ||
help='DBLP json collection file') | ||
parser.add_argument('--output_folder', required=True, help='output file') | ||
parser.add_argument('--max_docs_per_file', default=1000000, type=int, | ||
help='maximum number of documents in each jsonl file.') | ||
parser.add_argument('--data_type', required=True, default='dblp', help='dblp or pubmed') | ||
parser.add_argument('--use_abstract_in_query', action='store_true', | ||
help='If True use title and a abstract as query. If ' | ||
'False, use only title.') | ||
|
||
args = parser.parse_args() | ||
|
||
if not os.path.exists(args.output_folder): | ||
os.makedirs(args.output_folder) | ||
os.makedirs(os.path.join(args.output_folder, 'corpus')) | ||
|
||
create_dataset(args) | ||
print('Done!') |
Oops, something went wrong.