import argparse import os import pwd import sys import yaml from datetime import datetime from pytorch_lightning import Trainer, callbacks, loggers from src.const import NUMBER_OF_ATOM_TYPES from src.model_single import DDPM from src.utils import disable_rdkit_logging, Logger def find_last_checkpoint(checkpoints_dir): epoch2fname = [ (int(fname.split('=')[1].split('.')[0]), fname) for fname in os.listdir(checkpoints_dir) if fname.endswith('.ckpt') ] latest_fname = max(epoch2fname, key=lambda t: t[0])[1] return os.path.join(checkpoints_dir, latest_fname) def main(args): start_time = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f') run_name = f'{os.path.splitext(os.path.basename(args.config))[0]}_{pwd.getpwuid(os.getuid())[0]}_{args.exp_name}_bs{args.batch_size}_{start_time}' experiment = run_name if args.resume is None else args.resume checkpoints_dir = os.path.join(args.checkpoints, experiment) os.makedirs(os.path.join(args.logs, "general_logs", experiment),exist_ok=True) sys.stdout = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stdout) sys.stderr = Logger(logpath=os.path.join(args.logs, "general_logs", experiment, f'log.log'), syspart=sys.stderr) os.makedirs(checkpoints_dir, exist_ok=True) os.makedirs(args.logs, exist_ok=True) samples_dir = os.path.join(args.logs, 'samples', experiment) torch_device = 'cuda:0' if args.device == 'gpu' else 'cpu' wandb_logger = loggers.WandbLogger( save_dir=args.logs, project='diffdec_single', name=experiment, id=experiment, resume='must' if args.resume is not None else 'allow', entity=args.wandb_entity, ) number_of_atoms = NUMBER_OF_ATOM_TYPES in_node_nf = number_of_atoms + args.include_charges anchors_context = not args.remove_anchors_context context_node_nf = 2 if anchors_context else 1 if '.' in args.train_data_prefix: context_node_nf += 1 ddpm = DDPM( data_path=args.data, train_data_prefix=args.train_data_prefix, val_data_prefix=args.val_data_prefix, in_node_nf=in_node_nf, n_dims=3, context_node_nf=context_node_nf, hidden_nf=args.nf, activation=args.activation, n_layers=args.n_layers, attention=args.attention, tanh=args.tanh, norm_constant=args.norm_constant, inv_sublayers=args.inv_sublayers, sin_embedding=args.sin_embedding, normalization_factor=args.normalization_factor, aggregation_method=args.aggregation_method, diffusion_steps=args.diffusion_steps, diffusion_noise_schedule=args.diffusion_noise_schedule, diffusion_noise_precision=args.diffusion_noise_precision, diffusion_loss_type=args.diffusion_loss_type, normalize_factors=args.normalize_factors, include_charges=args.include_charges, lr=args.lr, batch_size=args.batch_size, torch_device=torch_device, model=args.model, test_epochs=args.test_epochs, n_stability_samples=args.n_stability_samples, normalization=args.normalization, log_iterations=args.log_iterations, samples_dir=samples_dir, data_augmentation=args.data_augmentation, center_of_mass=args.center_of_mass, inpainting=args.inpainting, anchors_context=anchors_context, ) checkpoint_callback = callbacks.ModelCheckpoint( dirpath=checkpoints_dir, filename=experiment + '_{epoch:02d}', monitor='loss/val', save_top_k=-1, every_n_epochs=20 ) trainer = Trainer( max_epochs=args.n_epochs, logger=wandb_logger, callbacks=checkpoint_callback, accelerator=args.device, devices=1, num_sanity_val_steps=0, enable_progress_bar=args.enable_progress_bar, ) if args.resume is None: last_checkpoint = None else: last_checkpoint = find_last_checkpoint(checkpoints_dir) print(f'Training will be resumed from the latest checkpoint {last_checkpoint}') print('Start training') trainer.fit(model=ddpm, ckpt_path=last_checkpoint) if __name__ == '__main__': p = argparse.ArgumentParser(description='E3Diffusion') p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs/single.yml') p.add_argument('--data', action='store', type=str, default="datasets") p.add_argument('--train_data_prefix', action='store', type=str, default='train') p.add_argument('--val_data_prefix', action='store', type=str, default='val') p.add_argument('--checkpoints', action='store', type=str, default='checkpoints') p.add_argument('--logs', action='store', type=str, default='logs') p.add_argument('--device', action='store', type=str, default='cpu') p.add_argument('--trainer_params', type=dict, help='parameters with keywords of the lightning trainer') p.add_argument('--log_iterations', action='store', type=str, default=20) p.add_argument('--exp_name', type=str, default='YourName') p.add_argument('--model', type=str, default='egnn_dynamics',help='our_dynamics | schnet | simple_dynamics | kernel_dynamics | egnn_dynamics |gnn_dynamics') p.add_argument('--probabilistic_model', type=str, default='diffusion', help='diffusion') # Training complexity is O(1) (unaffected), but sampling complexity is O(steps). p.add_argument('--diffusion_steps', type=int, default=500) p.add_argument('--diffusion_noise_schedule', type=str, default='polynomial_2', help='learned, cosine') p.add_argument('--diffusion_noise_precision', type=float, default=1e-5, ) p.add_argument('--diffusion_loss_type', type=str, default='l2', help='vlb, l2') p.add_argument('--n_epochs', type=int, default=200) p.add_argument('--batch_size', type=int, default=128) p.add_argument('--lr', type=float, default=2e-4) p.add_argument('--brute_force', type=eval, default=False,help='True | False') p.add_argument('--actnorm', type=eval, default=True,help='True | False') p.add_argument('--break_train_epoch', type=eval, default=False,help='True | False') p.add_argument('--dp', type=eval, default=True,help='True | False') p.add_argument('--condition_time', type=eval, default=True,help='True | False') p.add_argument('--clip_grad', type=eval, default=True,help='True | False') p.add_argument('--trace', type=str, default='hutch',help='hutch | exact') # EGNN args --> p.add_argument('--n_layers', type=int, default=6, help='number of layers') p.add_argument('--inv_sublayers', type=int, default=1, help='number of layers') p.add_argument('--nf', type=int, default=128, help='number of layers') p.add_argument('--tanh', type=eval, default=True, help='use tanh in the coord_mlp') p.add_argument('--attention', type=eval, default=True, help='use attention in the EGNN') p.add_argument('--norm_constant', type=float, default=1,help='diff/(|diff| + norm_constant)') p.add_argument('--sin_embedding', type=eval, default=False, help='whether using or not the sin embedding') p.add_argument('--ode_regularization', type=float, default=1e-3) p.add_argument('--dataset', type=str, default='crossdock', help='crossdock') p.add_argument('--datadir', type=str, default='/crossdock/', help='crossdock directory') p.add_argument('--filter_n_atoms', type=int, default=None, help='') p.add_argument('--dequantization', type=str, default='argmax_variational', help='uniform | variational | argmax_variational | deterministic') p.add_argument('--n_report_steps', type=int, default=1) p.add_argument('--wandb_usr', type=str) p.add_argument('--no_wandb', action='store_true', help='Disable wandb') p.add_argument('--enable_progress_bar', action='store_true', help='Disable wandb') p.add_argument('--online', type=bool, default=True, help='True = wandb online -- False = wandb offline') p.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training') p.add_argument('--save_model', type=eval, default=True, help='save model') p.add_argument('--generate_epochs', type=int, default=1,help='save model') p.add_argument('--num_workers', type=int, default=0, help='Number of worker for the dataloader') p.add_argument('--test_epochs', type=int, default=1) p.add_argument('--data_augmentation', type=eval, default=False, help='use attention in the EGNN') p.add_argument("--conditioning", nargs='+', default=[], help='arguments : homo | lumo | alpha | gap | mu | Cv') p.add_argument('--resume', type=str, default=None, help='') p.add_argument('--start_epoch', type=int, default=0, help='') p.add_argument('--ema_decay', type=float, default=0.999, help='Amount of EMA decay, 0 means off. A reasonable value is 0.999.') p.add_argument('--augment_noise', type=float, default=0) p.add_argument('--n_stability_samples', type=int, default=500,help='Number of samples to compute the stability') p.add_argument('--normalize_factors', type=eval, default=[1, 4, 1], help='normalize factors for [x, categorical, integer]') p.add_argument('--remove_h', action='store_true') p.add_argument('--include_charges', type=eval, default=True,help='include atom charge or not') p.add_argument('--visualize_every_batch', type=int, default=1e8,help="Can be used to visualize multiple times per epoch") p.add_argument('--normalization_factor', type=float, default=1,help="Normalize the sum aggregation of EGNN") p.add_argument('--aggregation_method', type=str, default='sum',help='"sum" or "mean"') p.add_argument('--normalization', type=str, default='batch_norm', help='batch_norm') p.add_argument('--wandb_entity', type=str, default='geometric', help='Entity (project) name') p.add_argument('--center_of_mass', type=str, default='scaffold', help='Where to center the data: scaffold | anchors') p.add_argument('--inpainting', action='store_true', default=False, help='Inpainting mode (full generation)') p.add_argument('--remove_anchors_context', action='store_true', default=False, help='Remove anchors context') disable_rdkit_logging() args = p.parse_args() if args.config: config_dict = yaml.load(args.config, Loader=yaml.FullLoader) arg_dict = args.__dict__ for key, value in config_dict.items(): if isinstance(value, list) and key != 'normalize_factors': for v in value: arg_dict[key].append(v) else: arg_dict[key] = value args.config = args.config.name else: config_dict = {} main(args=args)