This is the official code of the paper:
Inharmonious Region Localization with Auxiliary Style Feature
Penghao Wu, Li Niu, Liqing Zhang
arXiv Paper, BMVC 2022
Clone this repo and build the environment
git clone https://github.com/bcmi/AustNet-Inharmonious-Region-Localization.git
cd AustNet-Inharmonious-Region-Localization
conda env create -f environment.yml --name Austnet
conda activate Austnet
Download the semantic segmentation network model weight through link Google Drive or Baidu Yun with code pfpy. Put the model weight in the HRNet-Semantic-Segmentation-HRNet-OCR folder.
Please refer to DIRL to download the iHarmoney4 dataset.
To train AustNet, run
python train_austnet.py --dataset_root PATH_OF_THE_DATASET --logdir austnet_training_log --gpus NUMBER_OF_GPUS
To train AustNet_S, run
python train_austnet_s.py --dataset_root PATH_OF_THE_DATASET --logdir austnet_s_training_log --gpus NUMBER_OF_GPUS
Model | Google Drive Link | Baidu Yun Link |
---|---|---|
Austnet | Google Drive | Baidu Yun code: m8ku |
Austnet_s | Google Drive | Baidu Yun code: jrdi |
To evaluate AustNet, run
python test_austnet.py --dataset_root PATH_OF_THE_DATASET --ckpt MODEL_WEIGHT_PATH
To evaluate AustNet_S, run
python test_austnet_s.py --dataset_root PATH_OF_THE_DATASET --ckpt MODEL_WEIGHT_PATH
If you find our work or code helpful, please cite:
@inproceedings{Wu2022Inharmonious,
title={Inharmonious Region Localization with Auxiliary Style Feature},
author={Penghao Wu and Li Niu and Liqing Zhang},
booktitle={BMVC},
year={2022}
}
Our code is based on repositories: