""" A tutorial exercise for using different SVM kernels. Adapted from: https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html """ import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn import datasets, svm, metrics kernel = 'linear' # choice of linear, rbf, poly test_split = 0.1 random_seed = 0 degree = 3 gamma = 10 iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(random_seed) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(float) split_pos = int((1 - test_split) * n_sample) X_train = X[:split_pos] y_train = y[:split_pos] X_test = X[split_pos:] y_test = y[split_pos:] # fit the model clf = svm.SVC(kernel=kernel, degree=degree, gamma=gamma) clf.fit(X_train, y_train) print("Train accuracy: %s" % clf.score(X_train, y_train)) print("Test accuracy: %f" % clf.score(X_test, y_test)) plt.figure() plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired, edgecolor='k', s=20) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10, edgecolor='k') plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.savefig("plot.png")