{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[![AWS SDK for pandas](_static/logo.png \"AWS SDK for pandas\")](https://github.com/aws/aws-sdk-pandas)\n",
"\n",
"# 4 - Parquet Datasets\n",
"\n",
"awswrangler has 3 different write modes to store Parquet Datasets on Amazon S3.\n",
"\n",
"- **append** (Default)\n",
"\n",
" Only adds new files without any delete.\n",
" \n",
"- **overwrite**\n",
"\n",
" Deletes everything in the target directory and then add new files. If writing new files fails for any reason, old files are _not_ restored.\n",
" \n",
"- **overwrite_partitions** (Partition Upsert)\n",
"\n",
" Only deletes the paths of partitions that should be updated and then writes the new partitions files. It's like a \"partition Upsert\"."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from datetime import date\n",
"\n",
"import pandas as pd\n",
"\n",
"import awswrangler as wr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enter your bucket name:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" ············\n"
]
}
],
"source": [
"import getpass\n",
"\n",
"bucket = getpass.getpass()\n",
"path = f\"s3://{bucket}/dataset/\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating the Dataset"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 boo 2020-01-02"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\"id\": [1, 2], \"value\": [\"foo\", \"boo\"], \"date\": [date(2020, 1, 1), date(2020, 1, 2)]})\n",
"\n",
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"overwrite\")\n",
"\n",
"wr.s3.read_parquet(path, dataset=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appending"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 3 | \n",
" bar | \n",
" 2020-01-03 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 2 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 3 bar 2020-01-03\n",
"1 1 foo 2020-01-01\n",
"2 2 boo 2020-01-02"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\"id\": [3], \"value\": [\"bar\"], \"date\": [date(2020, 1, 3)]})\n",
"\n",
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"append\")\n",
"\n",
"wr.s3.read_parquet(path, dataset=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overwriting"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 3 | \n",
" bar | \n",
" 2020-01-03 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 3 bar 2020-01-03"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"overwrite\")\n",
"\n",
"wr.s3.read_parquet(path, dataset=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a **Partitioned** Dataset"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 boo 2020-01-02"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\"id\": [1, 2], \"value\": [\"foo\", \"boo\"], \"date\": [date(2020, 1, 1), date(2020, 1, 2)]})\n",
"\n",
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"overwrite\", partition_cols=[\"date\"])\n",
"\n",
"wr.s3.read_parquet(path, dataset=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upserting partitions (overwrite_partitions)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" xoo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" bar | \n",
" 2020-01-03 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 xoo 2020-01-02\n",
"2 3 bar 2020-01-03"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\"id\": [2, 3], \"value\": [\"xoo\", \"bar\"], \"date\": [date(2020, 1, 2), date(2020, 1, 3)]})\n",
"\n",
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"overwrite_partitions\", partition_cols=[\"date\"])\n",
"\n",
"wr.s3.read_parquet(path, dataset=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## BONUS - Glue/Athena integration"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 boo 2020-01-02"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\"id\": [1, 2], \"value\": [\"foo\", \"boo\"], \"date\": [date(2020, 1, 1), date(2020, 1, 2)]})\n",
"\n",
"wr.s3.to_parquet(df=df, path=path, dataset=True, mode=\"overwrite\", database=\"aws_sdk_pandas\", table=\"my_table\")\n",
"\n",
"wr.athena.read_sql_query(\"SELECT * FROM my_table\", database=\"aws_sdk_pandas\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.14",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.14"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}