Skip to content

Exercise: Use YOLO to detect hot-rolled steel strip surface defects (NEU-DET dataset).

License

Notifications You must be signed in to change notification settings

annsonic/Steel_defect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This project train object detection models to detect the defects on the hot-rolled steel surface. The models are trained and evaluated on NEU-DET dataset. I practice training the YOLOv5 and RetinaNet model, with the following techniques: anchor optimization, data augmentation (ElasticTransform, GridMask), label-smoothing and Adaptive Training Sample Selection.

From my result, I noticed that:

  1. If I union the boxes of crazing class, the AP would improve a lot. I suppose the labeling rule of crazing class should adopt a large bounding box because there are not many distict boundaries between the crazes in NEU-DET images.

  2. The AP score diverges: patches class is always doing well; rolled-in scale class is below average. The sooner the strong classes are recognized well in the early training period, the smaller score the weak classes will get. I have tried

  • Label Smoothing
  • Focal loss
  • More data augmentation
  • Cosine learning rate

but couldn't improve weak classes' score.

Performance

There are six types of surface defects in the NEU-DET dataset: crazing (Cr), inclusion (In), patches (Pa), pitted surface (Ps), rolled-in scale (Rs), and scratches (Sc). The dataset includes 300 grayscale samples in each class of surface defects, splitted in 80:20 ratio.

Table-1 AP@.5 validation results of different models on NEU-DET dataset.

NMS conf-thres=0.001, NMS iou-thres=0.5

Types [1]SSD300 [1]YOLO-V3* YOLOv5s(A) YOLOv5s(B) RetinaNet(ATSS)
Cr 0.411 0.389 0.527 0.960 0.470
In 0.796 0.737 0.787 0.611 0.795
Pa 0.839 0.935 0.945 0.882 0.952
Ps 0.839 0.748 0.854 0.908 0.852
Rs 0.621 0.607 0.581 0.521 0.550
Sc 0.836 0.914 0.805 0.656 0.569
mAP 0.714 0.722 0.750 0.756 0.698
FPS 37.6 64.5 - - -

※ My experiment with RetinaNet(ATSS) is not finished yet. The hyperparameters need to evolve well. It takes time ...

Table-2 My Training details

Type YOLOv5s(A) YOLOv5s(B) RetinaNet(ATSS)
Input image size 320 320 320
Backbone CSPdarknet+SPP CSPdarknet+SPP Resnet-18
label-smoothing
Modified labeling ('Cr', 'In', 'Ps', 'Rs')
Anchor optimization Kmeans Kmeans differential evolution
Cosine learning rate
Warming UP 2 epochs 2 epochs 2 epochs
Image weighting
IOU GIOU DIOU CIOU
Focal Loss
MedianBlur
RandomBrightnessContrast
RandomGamma
ImageCompression
RandomRotate90
GaussNoise
MultiplicativeNoise
ElasticTransform
GridDistortion
OpticalDistortion
GridMask
Mosaic Augment
Color Jitter
Perspective Transform
Translation Transform
Scaling Transform
Shearing Transform
Rotation
Vertical Flip
Horizontal Flip
RandomHSV
RandCrop

Installation

Python>=3.7.0 and PyTorch>=1.7

Folders

- Base folder
	- anchor-optimization (Optimize anchor of RetinaNet)
	- atssv1 (RetinaNet with ATSS project)
	- utils (Some data format converter)
		- clean_labels.py (union near boxes, only support VOC format)
		- statistics.py (plot statics of box annotations)
		- voc2coc.py (convert VOC to COCO style)
		- voc2csv.py (convert VOC to keras-retina style)
		- voc2yolo.py (convert VOC to YOLO style)
	- yolov5 (YOLOv5 project)

Setup YOLOv5 (PyTorch project)

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Setup RetinaNet(ATSS) (PyTorch project)

pip install cython
pip install 'git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI'

Setup anchor-optimization for RetinaNet (TensorFlow/Keras project)

Note: The dependency keras-retina is imcompatible with TensorFlow 2.8.0, Keras 2.8.0 and Numpy 1.21.5. It works with keras 2.4 and tensorflow 2.3.0.

  1. git clone https://github.com/martinzlocha/anchor-optimization.git

  2. cd anchor-optimization

  3. pip install .

  4. python setup.py build_ext --inplace

Usage

YOLOv5 part

  • Convert dataset format (VOC to YOLO)
  1. Modify ROOT_FOLDER_PATH and COPY_IMG variable in voc2yolo.py
  2. run voc2yolo.py
  3. generated NEU-DET_YOLO folder will be under your ROOT_FOLDER_PATH
  • Anchor optimization
  1. modify anchor_t in hyp.neu.yaml
  2. run tain.py with --img-size <int> argument
  • Train
  1. cd yolov5
python train.py \
--weights 'yolov5s.pt' \
--cfg './models/yolov5s.yaml' \
--data './data/neu.yaml' \
--hyp './data/hyp.neu.yaml' \
--epochs 90 \
--batch-size 256 \
--img 320 \
--cache \
--image-weights \
--label-smoothing 0.1 \
--cos-lr \
--device '0' \
--project <path for your result> \
--exist-ok 
  • Evaluate
  1. cd yolov5
python val.py \
--weights <your ckpt file path> \
--data './data/neu.yaml' \
--img 320 \
--task 'val' \
--conf-thres 0.3 \
--iou-thres 0.2 \
--device '0' \
--project <path for your result> \
--save-txt \
--save-conf \
--verbose 

RetinaNet part

  • Convert dataset format (VOC to COCO)
  1. Modify ROOT_FOLDER_PATH and COPY_IMG variable in voc2yolo.py
  2. run voc2yolo.py
  3. generated NEU-DET_COCO folder will be under your ROOT_FOLDER_PATH
  • Anchor optimization
  1. anchor-optimization <your csv file> --image-min-side <training image size>

  Note: you should put the csv file and the class_id text file in the image folder of your dataset.

  1. Put the displayed anchor_scales and anchor_ratios values to your cfg yaml file.

  Note: the cfg yaml file template is atssv1/config/neu.yaml.

  • Train
  1. cd atssv1
  2. modify main.py (modify cfg_path) and your cfg yaml file.
  3. python main.py
  4. displaying mAP results, for example:
epoch: 0|match_num:165|loss:2.2716|cls:1.1108|box:0.7987|iou:0.3622
  • Evaluate
  1. cd atssv1
  2. modify eval.py (modify cfg_path) and your cfg yaml file (modify ckpt_name).
  3. python eval.py
  4. displaying mAP results, for example:
Start evaluating...
100% 90/90 [03:31<00:00,  2.35s/it]
	Single classid=0, ap50: 0.25902219641001
	Single classid=1, ap50: 0.7291185018137647
	Single classid=2, ap50: 0.9126426816465034
	Single classid=3, ap50: 0.7710457516339869
	Single classid=4, ap50: 0.4761086432442042
	Single classid=5, ap50: 0.47500818551404606
******************** eval start ********************
epoch:  2|mp:56.9954|mr:70.1405|map50:60.3824|map:27.5001
******************** eval end ********************

Reference

[1] Xupeng Kou, Shuaijun Liu, Kaiqiang Cheng, Ye Qian, Development of a YOLO-V3-based model for detecting defects on steel strip surface, Measurement, Volume 182, 2021, 109454, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2021.109454.

Acknowledgement

[1] Anchor optimization for RetinaNet link

[2] ATSS_RetinaNet link

[3] YOLOv5 link

About

Exercise: Use YOLO to detect hot-rolled steel strip surface defects (NEU-DET dataset).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages