'''RetinaFPN in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.downsample = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.downsample = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.downsample(x) out = F.relu(out) return out class FPN(nn.Module): def __init__(self, block, num_blocks): super(FPN, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) # Bottom-up layers self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.conv6 = nn.Conv2d(2048, 256, kernel_size=3, stride=2, padding=1) self.conv7 = nn.Conv2d( 256, 256, kernel_size=3, stride=2, padding=1) # Lateral layers self.latlayer1 = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.latlayer3 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0) # Top-down layers self.toplayer1 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.toplayer2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return F.upsample(x, size=(H,W), mode='bilinear') + y def forward(self, x): # Bottom-up c1 = F.relu(self.bn1(self.conv1(x))) c1 = F.max_pool2d(c1, kernel_size=3, stride=2, padding=1) c2 = self.layer1(c1) c3 = self.layer2(c2) c4 = self.layer3(c3) c5 = self.layer4(c4) p6 = self.conv6(c5) p7 = self.conv7(F.relu(p6)) # Top-down p5 = self.latlayer1(c5) p4 = self._upsample_add(p5, self.latlayer2(c4)) p4 = self.toplayer1(p4) p3 = self._upsample_add(p4, self.latlayer3(c3)) p3 = self.toplayer2(p3) return p3, p4, p5, p6, p7 def FPN50(): return FPN(Bottleneck, [3,4,6,3]) def FPN101(): return FPN(Bottleneck, [2,4,23,3]) def test(): net = FPN50() fms = net(Variable(torch.randn(1,3,600,300))) for fm in fms: print(fm.size()) # test()