-
Notifications
You must be signed in to change notification settings - Fork 190
/
Copy pathniqe.py
163 lines (136 loc) · 6.03 KB
/
niqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import division
from __future__ import print_function
"""
Video Quality Metrics
Copyright (c) 2015 Alex Izvorski <aizvorski@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
"""
NIQE: Natural Image Quality Evaluator
An excellent no-reference image quality metric.
Code below is roughly similar on Matlab code graciously provided by Anish Mittal, but is written from scratch (since most of the Matlab functions there don't have numpy equivalents).
Training the model is not implemented yet, so we rely on pre-trained model parameters in file modelparameters.mat.
Cite:
Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a completely blind image quality analyzer." Signal Processing Letters, IEEE 20.3 (2013): 209-212.
"""
import math
import numpy
import numpy.linalg
from scipy.special import gamma
from scipy.ndimage.filters import gaussian_filter
import scipy.misc
import scipy.io
import skimage.transform
"""
Generalized Gaussian distribution estimation.
Cite:
Dominguez-Molina, J. Armando, et al. "A practical procedure to estimate the shape parameter in the generalized Gaussian distribution.",
available through http://www. cimat. mx/reportes/enlinea/I-01-18_eng. pdf 1 (2001).
"""
"""
Generalized Gaussian ratio function
Cite: Dominguez-Molina 2001, pg 7, eq (8)
"""
def generalized_gaussian_ratio(alpha):
return (gamma(2.0/alpha)**2) / (gamma(1.0/alpha) * gamma(3.0/alpha))
"""
Generalized Gaussian ratio function inverse (numerical approximation)
Cite: Dominguez-Molina 2001, pg 13
"""
def generalized_gaussian_ratio_inverse(k):
a1 = -0.535707356
a2 = 1.168939911
a3 = -0.1516189217
b1 = 0.9694429
b2 = 0.8727534
b3 = 0.07350824
c1 = 0.3655157
c2 = 0.6723532
c3 = 0.033834
if k < 0.131246:
return 2 * math.log(27.0/16.0) / math.log(3.0/(4*k**2))
elif k < 0.448994:
return (1/(2 * a1)) * (-a2 + math.sqrt(a2**2 - 4*a1*a3 + 4*a1*k))
elif k < 0.671256:
return (1/(2*b3*k)) * (b1 - b2*k - math.sqrt((b1 - b2*k)**2 - 4*b3*(k**2)))
elif k < 0.75:
#print "%f %f %f" % (k, ((3-4*k)/(4*c1)), c2**2 + 4*c3*log((3-4*k)/(4*c1)) )
return (1/(2*c3)) * (c2 - math.sqrt(c2**2 + 4*c3*math.log((3-4*k)/(4*c1))))
else:
print("warning: GGRF inverse of %f is not defined" %(k))
return numpy.nan
"""
Estimate the parameters of an asymmetric generalized Gaussian distribution
"""
def estimate_aggd_params(x):
x_left = x[x < 0]
x_right = x[x >= 0]
stddev_left = math.sqrt((1.0/(x_left.size - 1)) * numpy.sum(x_left ** 2))
stddev_right = math.sqrt((1.0/(x_right.size - 1)) * numpy.sum(x_right ** 2))
if stddev_right == 0:
return 1, 0, 0 # TODO check this
r_hat = numpy.mean(numpy.abs(x))**2 / numpy.mean(x**2)
y_hat = stddev_left / stddev_right
R_hat = r_hat * (y_hat**3 + 1) * (y_hat + 1) / ((y_hat**2 + 1) ** 2)
alpha = generalized_gaussian_ratio_inverse(R_hat)
beta_left = stddev_left * math.sqrt(gamma(3.0/alpha) / gamma(1.0/alpha))
beta_right = stddev_right * math.sqrt(gamma(3.0/alpha) / gamma(1.0/alpha))
return alpha, beta_left, beta_right
def compute_features(img_norm):
features = []
alpha, beta_left, beta_right = estimate_aggd_params(img_norm)
features.extend([ alpha, (beta_left+beta_right)/2 ])
for x_shift, y_shift in ((0,1), (1,0), (1,1), (1,-1)):
img_pair_products = img_norm * numpy.roll(numpy.roll(img_norm, y_shift, axis=0), x_shift, axis=1)
alpha, beta_left, beta_right = estimate_aggd_params(img_pair_products)
eta = (beta_right - beta_left) * (gamma(2.0/alpha) / gamma(1.0/alpha))
features.extend([ alpha, eta, beta_left, beta_right ])
return features
def normalize_image(img, sigma=7/6):
mu = gaussian_filter(img, sigma, mode='nearest')
mu_sq = mu * mu
sigma = numpy.sqrt(numpy.abs(gaussian_filter(img * img, sigma, mode='nearest') - mu_sq))
img_norm = (img - mu) / (sigma + 1)
return img_norm
def niqe(img):
model_mat = scipy.io.loadmat('modelparameters.mat')
model_mu = model_mat['mu_prisparam']
model_cov = model_mat['cov_prisparam']
features = None
img_scaled = img
for scale in [1,2]:
if scale != 1:
img_scaled = skimage.transform.rescale(img, 1/scale)
#img_scaled = scipy.misc.imresize(img_norm, 0.5)
# print img_scaled
img_norm = normalize_image(img_scaled)
scale_features = []
block_size = 96//scale
for block_col in range(img_norm.shape[0]//block_size):
for block_row in range(img_norm.shape[1]//block_size):
block_features = compute_features( img_norm[block_col*block_size:(block_col+1)*block_size, block_row*block_size:(block_row+1)*block_size] )
scale_features.append(block_features)
# print "len(scale_features)=%f" %(len(scale_features))
if features is None:
features = numpy.vstack(scale_features)
# print features.shape
else:
features = numpy.hstack([features, numpy.vstack(scale_features)])
# print features.shape
features_mu = numpy.mean(features, axis=0)
features_cov = numpy.cov(features.T)
pseudoinv_of_avg_cov = numpy.linalg.pinv((model_cov + features_cov)/2)
niqe_quality = math.sqrt( (model_mu - features_mu).dot( pseudoinv_of_avg_cov.dot( (model_mu - features_mu).T ) ) )
return niqe_quality
# import sys
# img = scipy.misc.imread(sys.argv[1], flatten=True).astype(numpy.float)/255.0
# print "NIQE = %f" %(niqe(img))