This repository is a reference implementation for COTR. COTR establishes correspondence in a functional and end-to-end fashion. It solves dense and sparse correspondence problem in the same framework.
[arXiv], [video], [presentation], [pretrained_weights], [distance_matrix]
See prepare_data.md
.
Add an entry inside COTR/global_configs/dataset_config.json
, make sure it is correct on your system. In the provided dataset_config.json
, we have different configurations for different clusters.
Explanations on some json parameters:
valid_list_json
: The valid list json file, see 2. Valid list
in Scripts to generate dataset
.
train_json/val_json/test_json
: The splits json files, see 3. Train/val/test split
in Scripts to generate dataset
.
scene_dir
: Path to Megadepth SfM folder(rectified ones!). {0}{1}
are scene and sequence id used by f-string.
image_dir/depth_dir
: Path to images and depth maps of Megadepth.
python train_cotr.py --scene_file sample_data/jsons/debug_megadepth.json --dataset_name=megadepth --info_level=rgbd --use_ram=no --batch_size=2 --lr_backbone=1e-4 --max_iter=200 --valid_iter=10 --workers=4 --confirm=no
Important arguments:
use_ram
: Set to "yes" to load data into maim memory.
crop_cam
: How to crop the image, it will change the camera intrinsic accordingly.
scene_file
: The sequence control file.
suffix
: Give the model a unique suffix.
load_weights
: Load a pretrained weights, only need the model name, it will automatically find the folder with the same name under the output folder, and load the "checkpoint.pth.tar".
As stated in the paper, we have 3 training stages. The machine we used has 1 RTX 3090, i7-10700, and 128G RAM. We store the training data inside the main memory during the first two stages.
Stage 1: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=24 --learning_rate=1e-4 --lr_backbone=0 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_1 --valid_iter=1000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr
Stage 2: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=yes --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=2000000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_2 --valid_iter=10000 --enable_zoom=no --crop_cam=crop_center_and_resize --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:24_pe:lin_sine_lrbackbone:0.0_suffix:stage_1
Stage 3: python train_cotr.py --scene_file sample_data/jsons/200_megadepth.json --info_level=rgbd --use_ram=no --use_cc=no --batch_size=16 --learning_rate=1e-4 --lr_backbone=1e-5 --max_iter=300000 --workers=8 --cycle_consis=yes --bidirectional=yes --position_embedding=lin_sine --layer=layer3 --confirm=no --dataset_name=megadepth_sushi --suffix=stage_3 --valid_iter=2000 --enable_zoom=yes --crop_cam=no_crop --out_dir=./out/cotr --load_weights=model:cotr_resnet50_layer3_1024_dset:megadepth_sushi_bs:16_pe:lin_sine_lrbackbone:1e-05_suffix:stage_2
Check out our demo video at here.
Our implementation is based on PyTorch. Install the conda environment by: conda env create -f environment.yml
.
Activate the environment by: conda activate cotr_env
.
Download the pretrained weights at here. Extract in to ./out
, such that the weights file is at /out/default/checkpoint.pth.tar
.
python demo_single_pair.py --load_weights="default"
Example sparse output:
Example dense output with triangulation:
Note: This example uses 10K valid sparse correspondences to densify.
python demo_face.py --load_weights="default"
Example:
python demo_homography.py --load_weights="default"
python demo_guided_matching.py --load_weights="default"
Note: this demo uses both known camera intrinsic and extrinsic.
python demo_reconstruction.py --load_weights="default" --max_corrs=2048 --faster_infer=yes
If the annotator knows the scale difference of two buildings, then COTR can skip the scale estimation step.
python demo_wbs.py --load_weights="default"
We added a faster inference engine.
The idea is that for each network invocation, we want to solve more queries. We search for nearby queries and group them on the fly.
Note: Faster inference engine has slightly worse spatial accuracy.
Guided matching demo now supports faster inference.
The time consumption for default inference engine is ~216s, and the time consumption for faster inference engine is ~79s, on 1080Ti.
Try python demo_guided_matching.py --load_weights="default" --faster_infer=yes
.
If you use this code in your research, please cite our paper:
@inproceedings{jiang2021cotr,
title={{COTR: Correspondence Transformer for Matching Across Images}},
author={Wei Jiang and Eduard Trulls and Jan Hosang and Andrea Tagliasacchi and Kwang Moo Yi},
booktitle=ICCV,
year={2021}
}