forked from ArashPartow/exprtk
-
Notifications
You must be signed in to change notification settings - Fork 0
C++ Mathematical Expression Parsing And Evaluation Library https://www.partow.net/programming/exprtk/index.html
aiekick/exprtk
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
C++ Mathematical Expression Toolkit Library [INTRODUCTION] The C++ Mathematical Expression Toolkit Library (ExprTk) is a simple to use, easy to integrate and extremely efficient mathematical expression parsing and evaluation engine. The parsing engine supports numerous forms of functional and logic processing semantics and is very easily extendible. [CAPABILITIES] The ExprTk evaluator supports the following fundamental mathematical operations, functions and processes: (0) Basic operators: +, -, *, /, %, ^ (1) Functions: abs, avg, ceil, clamp, erf, erfc, exp, floor, frac, inrange, log, log10, log1p, log2, logn, max, min, root, round, roundn, sgn, sqrt, sum, trunc (2) Trigonometry: acos, asin, atan, atan2, cos, cosh, cot, csc, deg2grad, deg2rad, grad2deg, hypot, rad2deg, sec, sin, sinh, tan, tanh (3) Equalities & Inequalities: =, ==, <>, !=, <, <=, >, >= (4) Boolean logic: and, mand, mor, nand, nor, not, or, shl, shr, xnor, xor, true, false (5) Conditional, Switch & Loop statements: if-then-else, switch-case, while (6) Assignment: := (7) String processing: in, like, ilike (8) Calculus: numerical integration and differentiation [EXAMPLE EXPRESSIONS] The following is a short sample of the types of mathematical expressions that can be parsed and evaluated using the ExprTk library. (01) sqrt(1 - (x^2)) (02) clamp(-1,sin(2 * pi * x) + cos(y / 2 * pi),+1) (03) sin(2 * x) (04) if(((x + 2) == 3) and ((y + 5) <= 9),1 + w, 2 / z) (05) inrange(-2,m,+2) == if(({-2 <= m} and [m <= +2]),1,0) (06) ({1/1}*[1/2]+(1/3))-{1/4}^[1/5]+(1/6)-({1/7}+[1/8]*(1/9)) (07) a * exp(2 * t) + c (08) z := x + sin(2 * pi / y) (09) u := 2 * (pi * z) / (w := x + cos(y / pi)) (10) 2x + 3y + 4z + 5w == 2 * x + 3 * y + 4 * z + 5 * w (11) 3(x + y) / 2 + 1 == 3 * (x + y) / 2 + 1 (12) (x + y)3 + 1 / 4 == (x + y) * 3 + 1 / 4 (13) (x + y)z + 1 / 2 == (x + y) * z + 1 / 2 (14) (sin(x/pi)cos(2y) + 1)==(sin(x / pi) * cos(2 * y) + 1) (15) 25x^5 - 35x^4 - 15x^3 + 40x^2 - 15x + 1 (16) if (avg(x,y) <= x + y, x - y, x * y) + 2 * pi / x (17) fib_i := fib_i + (x := y + 0 * (fib_i := x + (y := fib_i))) (18) while (x <= 100) { x := x + 1 } (19) x <= 'abc123' and (y in 'AString') or ('1x2y3z' != z) (20) (x like '*123*') or ('a123b' ilike y) [COPYRIGHT NOTICE] Free use of the C++ Mathematical Expression Toolkit Library is permitted under the guidelines and in accordance with the most current version of the Common Public License. http://www.opensource.org/licenses/cpl1.0.php [DOWNLOADS & UPDATES] The most recent version of the C++ Mathematical Expression Toolkit Library including all updates and tests can be found at the following locations: (1) http://www.partow.net/programming/exprtk/index.html (2) svn checkout http://exprtk.googlecode.com/svn/ exprtk [INSTALLATION] The header file exprtk.hpp should be placed in a project or system include path (e.g: /usr/include/). [COMPILATION] (1) For a complete build: make clean all (2) For a PGO build: make clean pgo (3) To strip executables: make strip_bin [COMPILER COMPATIBILITY] (*) GNU Compiler Collection (4.3+) (*) Intel® C++ Compiler (9.x+) (*) Clang/LLVM (1.1+) (*) PGI C++ (10.x+) (*) Microsoft Visual Studio C++ Compiler (8.1+) (*) Comeau C++ Compiler (4.3+) (*) IBM XL C/C++ (10.x+) [BUILT-IN OPERATIONS & FUNCTIONS] (0) Basic Operators +-----------+--------------------------------------------------------+ | OPERATOR | DEFINITION | +-----------+--------------------------------------------------------+ | + | Addition between x and y. (eg: x + y) | +-----------+--------------------------------------------------------+ | - | Subtraction between x and y. (eg: x - y) | +-----------+--------------------------------------------------------+ | * | Multiplication between x and y. (eg: x * y) | +-----------+--------------------------------------------------------+ | / | Division between x and y (eg: x / y) | +-----------+--------------------------------------------------------+ | % | Modulus of x with respect to y. (eg: x % y) | +-----------+--------------------------------------------------------+ | ^ | x to the power of y. (eg: x ^ y) | +-----------+--------------------------------------------------------+ | := | Assign the value of x to y. (eg: y := x) | | | where y is a variable type. | +-----------+--------------------------------------------------------+ (1) Equalities & Inequalities +-----------+--------------------------------------------------------+ | OPERATOR | DEFINITION | +-----------+--------------------------------------------------------+ | == or = | True only if x is strictly equal to y. (eg: x == y) | +-----------+--------------------------------------------------------+ | <> or != | True only if x does not equal y (eg: x <> y or x != y) | +-----------+--------------------------------------------------------+ | < | True only if x is less than y. (eg: x < y) | +-----------+--------------------------------------------------------+ | <= | True only if x is less than or equal to y. (eg: x <= y)| +-----------+--------------------------------------------------------+ | > | True only if x is greater than y. (eg: x > y) | +-----------+--------------------------------------------------------+ | >= | True only if x greater than or equal to y (eg: x >= y) | +-----------+--------------------------------------------------------+ (2) Boolean Operations +-----------+--------------------------------------------------------+ | OPERATOR | DEFINITION | +-----------+--------------------------------------------------------+ | true | True state or any value other than zero (typically 1). | +-----------+--------------------------------------------------------+ | false | False state, value of zero. | +-----------|--------------------------------------------------------+ | and | Logical AND, True only if x and y are both true. | | | (eg: x and y) | +-----------+--------------------------------------------------------+ | mand | Multi-input logical AND, True only if all inputs are | | | true. Left to right short-circuiting of expressions. | | | (eg: mand(x > y,z < w,u or v,w and x)) | +-----------|--------------------------------------------------------+ | mor | Multi-input logical OR, True if at least one of the | | | inputs are true. Left to right short-circuiting of | | | expressions. (eg: mand(x > y,z < w,u or v,w and x)) | +-----------+--------------------------------------------------------+ | nand | Logical NAND, True only if either x or y is false. | | | (eg: x nand y) | +-----------+--------------------------------------------------------+ | nor | Logical NOR, True only if the result of x or y is false| | | (eg: x nor y) | +-----------+--------------------------------------------------------+ | not | Logical NOT, Negate the logical sense of the input. | | | (eg: not(x and y) == x nand y) | +-----------+--------------------------------------------------------+ | or | Logical OR, True if either x or y is true. (eg: x or y)| +-----------+--------------------------------------------------------+ | xor | Logical XOR, True only if the logical states of x and y| | | differ. (eg: x xor y) | +-----------+--------------------------------------------------------+ | xnor | Logical XNOR, True iff the biconditional of x and y is | | | satisfied. (eg: x xnor y) | +-----------+--------------------------------------------------------+ | if | If x is true then return y else return z. | | | (eg: if(x, y, z) or if((x + 1) > 2y, z + 1, w / v)) | +-----------+--------------------------------------------------------+ | switch | The first true case condition that is encountered will | | | determine the result of the switch. If none of the case| | | conditions hold true, the default action is assumed as | | | the final return value. This is sometimes also known as| | | a multi-way branch mechanism. | | | eg: | | | switch | | | { | | | case x > (y+z) : 2*x/abs(y-z); | | | case x < 3 : sin(x + y) | | | default : 1 + x; | | | } | +-----------|--------------------------------------------------------+ | & | Similar to AND but with left to right expression short | | | circuiting optimisation. (eg: (x & y) == (y and x)) | +-----------|--------------------------------------------------------+ | | | Similar to OR but with left to right expression short | | | circuiting optimisation. (eg: (x | y) == (y or x)) | +-----------+--------------------------------------------------------+ (3) General Purpose Functions +-----------+--------------------------------------------------------+ | FUNCTION | DEFINITION | +-----------+--------------------------------------------------------+ | abs | Absolute value of x. | +-----------+--------------------------------------------------------+ | avg | Average of all the inputs. | | | (eg: avg(x,y,z,w,u,v) == (x+y+z+w+u+v)/6) | +-----------+--------------------------------------------------------+ | ceil | Smallest integer that is greater than or equal to x. | +-----------+--------------------------------------------------------+ | clamp | Clamp x in range between r0 and r1, where r0 < r1. | | | (eg: clamp(r0,x,r1) | +-----------+--------------------------------------------------------+ | equal | Equality test between x and y using normalized epsilon | +-----------+--------------------------------------------------------+ | erf | Error function of x | +-----------+--------------------------------------------------------+ | erfc | Complimentary error function of x | +-----------+--------------------------------------------------------+ | exp | e to the power of x | +-----------+--------------------------------------------------------+ | floor | Largest integer that is less than or equal to x. | +-----------+--------------------------------------------------------+ | frac | Fractional portion of x | +-----------+--------------------------------------------------------+ | hypot | Hypotenuse of x and y (eg: hypot(x,y) = sqrt(x*x +y*y))| +-----------+--------------------------------------------------------+ | log | Natural logarithm of x | +-----------+--------------------------------------------------------+ | log10 | Base 10 logarithm of x | +-----------+--------------------------------------------------------+ | log1p | Natural logarithm of 1 + x, where x is very small. | | | (eg: log1p(x)) | +-----------+--------------------------------------------------------+ | log2 | Base 2 logarithm of x | +-----------+--------------------------------------------------------+ | logn | Base N logarithm of x (eg: logn(1235,8)) | | | where n > 0 and is an integer. | +-----------+--------------------------------------------------------+ | max | Largest value of all the inputs. (eg: max(x,y,z,w,u,v))| +-----------+--------------------------------------------------------+ | min | Smallest value of all the inputs. (eg: min(x,y,z,w,u)) | +-----------+--------------------------------------------------------+ | mul | Product of all the inputs. | | | (eg: mul(x,y,z,w,u,v,t) == (x*y*z*w*u*v*t)) | +-----------+--------------------------------------------------------+ | nequal | Not-equal test between x and y using normalized epsilon| +-----------+--------------------------------------------------------+ | root | Nth-Root of x (eg: root(x,3)) | | | where n > 0 and is an integer. | +-----------+--------------------------------------------------------+ | round | Round x to the nearest integer. | +-----------+--------------------------------------------------------+ | roundn | Round x to the n decimal places (eg: roundn(x,4)) | | | where n > 0 and is an integer. | +-----------+--------------------------------------------------------+ | sgn | Sign of x, -1 where x < 0, +1 where x > 0, else zero. | +-----------+--------------------------------------------------------+ | sqrt | Square root of x, where x > 0 | +-----------+--------------------------------------------------------+ | sum | Sum of all the inputs. | | | (eg: sum(x,y,z,w,u,v,t) == (x+y+z+w+u+v+t)) | +-----------+--------------------------------------------------------+ | trunc | Integer portion of x | +-----------+--------------------------------------------------------+ | ~ | Evaluate each sub-expression, then return as the result| | | the value of the last sub-expression. This is known as | | | multiple sequence point evaluation. | | | (eg: ~(x+1,y/z,abs(y^3),sin(w/u)) == (sin(w/u))) | +-----------+--------------------------------------------------------+ (4) Trigonometry Functions +-----------+--------------------------------------------------------+ | FUNCTION | DEFINITION | +-----------+--------------------------------------------------------+ | acos | Arc cosine of x expressed in radians. Interval [-1,+1] | +-----------+--------------------------------------------------------+ | asin | Arc sine of x expressed in radians. Interval [-1,+1] | +-----------+--------------------------------------------------------+ | atan | Arc tangent of x expressed in radians. Interval [-1,+1]| +-----------+--------------------------------------------------------+ | atan2 | Arc tangent of x expressed in radians. Interval [-1,+1]| +-----------+--------------------------------------------------------+ | cos | Cosine of x | +-----------+--------------------------------------------------------+ | cosh | Hyperbolic cosine of x | +-----------+--------------------------------------------------------+ | cot | Cotangent of x | +-----------+--------------------------------------------------------+ | csc | Cosecant of x | +-----------+--------------------------------------------------------+ | sec | Secant of x | +-----------+--------------------------------------------------------+ | sin | Sine of x | +-----------+--------------------------------------------------------+ | sinh | Hyperbolic sine of x | +-----------+--------------------------------------------------------+ | tan | Tangent of x | +-----------+--------------------------------------------------------+ | tanh | Hyperbolic tangent of x | +-----------+--------------------------------------------------------+ | deg2rad | Convert x from degrees to radians | +-----------+--------------------------------------------------------+ | deg2grad | Convert x from degrees to gradians | +-----------+--------------------------------------------------------+ | rad2deg | Convert x from radians to degrees | +-----------+--------------------------------------------------------+ | grad2deg | Convert x from gradians to degrees | +-----------+--------------------------------------------------------+ (5) String Processing +-----------+--------------------------------------------------------+ | FUNCTION | DEFINITION | +-----------+--------------------------------------------------------+ | in | True only if x is a substring of y | | | (eg: x in y or 'abc' in 'abcdefgh') | +-----------+--------------------------------------------------------+ | like | True only if the string x matches the pattern y. | | | Available wildcard characters are '*' and '?' denoting | | | zero or more and zero or one matches respectively. | | | (eg: x like y or 'abcdefgh' like 'a?d*h') | +-----------+--------------------------------------------------------+ | like | True only if the string x matches the pattern y in a | | | case insensitive manner. Available wildcard characters | | | are '*' and '?' denoting zero or more and zero or one | | | matches respectively. | | | (eg: x ilike y or 'a1B2c3D4e5F6g7H' like 'a?d*h') | +-----------+--------------------------------------------------------+ [SPECIAL FUNCTIONS] The purpose of special functions in ExprTk is to provide compiler generated equivalents of common mathematical expressions which can be invoked by using the 'special function' syntax (eg: $f12(x,y,z) or $f24(x,y,z,w)). Special functions dramatically decrease the total evaluation time of expressions which would otherwise have been written using the common form by reducing the total number of nodes in the evaluation tree of an expression and by also leveraging the compiler's ability to correctly optimize such expressions for a given architecture. 3-Parameter 4-Parameter +-------------+-------------+ +--------------+------------------+ | Prototype | Operation | | Prototype | Operation | +-------------+-------------+ +--------------+------------------+ $f00(x,y,z) | (x + y) / z $f47(x,y,z,w) | x + ((y + z) / w) $f01(x,y,z) | (x + y) * z $f48(x,y,z,w) | x + ((y + z) * w) $f02(x,y,z) | (x + y) - z $f49(x,y,z,w) | x + ((y - z) / w) $f03(x,y,z) | (x + y) + z $f50(x,y,z,w) | x + ((y - z) * w) $f04(x,y,z) | (x - y) / z $f51(x,y,z,w) | x + ((y * z) / w) $f05(x,y,z) | (x - y) * z $f52(x,y,z,w) | x + ((y * z) * w) $f06(x,y,z) | (x * y) + z $f53(x,y,z,w) | x + ((y / z) + w) $f07(x,y,z) | (x * y) - z $f54(x,y,z,w) | x + ((y / z) / w) $f08(x,y,z) | (x * y) / z $f55(x,y,z,w) | x + ((y / z) * w) $f09(x,y,z) | (x * y) * z $f56(x,y,z,w) | x - ((y + z) / w) $f10(x,y,z) | (x / y) + z $f57(x,y,z,w) | x - ((y + z) * w) $f11(x,y,z) | (x / y) - z $f58(x,y,z,w) | x - ((y - z) / w) $f12(x,y,z) | (x / y) / z $f59(x,y,z,w) | x - ((y - z) * w) $f13(x,y,z) | (x / y) * z $f60(x,y,z,w) | x - ((y * z) / w) $f14(x,y,z) | x / (y + z) $f61(x,y,z,w) | x - ((y * z) * w) $f15(x,y,z) | x / (y - z) $f62(x,y,z,w) | x - ((y / z) / w) $f16(x,y,z) | x / (y * z) $f63(x,y,z,w) | x - ((y / z) * w) $f17(x,y,z) | x / (y / z) $f64(x,y,z,w) | ((x + y) * z) - w $f18(x,y,z) | x * (y + z) $f65(x,y,z,w) | ((x - y) * z) - w $f19(x,y,z) | x * (y - z) $f66(x,y,z,w) | ((x * y) * z) - w $f20(x,y,z) | x * (y * z) $f67(x,y,z,w) | ((x / y) * z) - w $f21(x,y,z) | x * (y / z) $f68(x,y,z,w) | ((x + y) / z) - w $f22(x,y,z) | x - (y + z) $f69(x,y,z,w) | ((x - y) / z) - w $f23(x,y,z) | x - (y - z) $f70(x,y,z,w) | ((x * y) / z) - w $f24(x,y,z) | x - (y / z) $f71(x,y,z,w) | ((x / y) / z) - w $f25(x,y,z) | x - (y * z) $f72(x,y,z,w) | (x * y) + (z * w) $f26(x,y,z) | x + (y * z) $f73(x,y,z,w) | (x * y) - (z * w) $f27(x,y,z) | x + (y / z) $f74(x,y,z,w) | (x * y) + (z / w) $f28(x,y,z) | x + (y + z) $f75(x,y,z,w) | (x * y) - (z / w) $f29(x,y,z) | x + (y - z) $f76(x,y,z,w) | (x / y) + (z / w) $f30(x,y,z) | x * y^2 + z $f77(x,y,z,w) | (x / y) - (z / w) $f31(x,y,z) | x * y^3 + z $f78(x,y,z,w) | (x / y) - (z * w) $f32(x,y,z) | x * y^4 + z $f79(x,y,z,w) | x / (y + (z * w)) $f33(x,y,z) | x * y^5 + z $f80(x,y,z,w) | x / (y - (z * w)) $f34(x,y,z) | x * y^6 + z $f81(x,y,z,w) | x * (y + (z * w)) $f35(x,y,z) | x * y^7 + z $f82(x,y,z,w) | x * (y - (z * w)) $f36(x,y,z) | x * y^8 + z $f83(x,y,z,w) | x*y^2 + z*w^2 $f37(x,y,z) | x * y^9 + z $f84(x,y,z,w) | x*y^3 + z*w^3 $f38(x,y,z) | x * log(y)+z $f85(x,y,z,w) | x*y^4 + z*w^4 $f39(x,y,z) | x * log(y)-z $f86(x,y,z,w) | x*y^5 + z*w^5 $f40(x,y,z) | x * log10(y)+z $f87(x,y,z,w) | x*y^6 + z*w^6 $f41(x,y,z) | x * log10(y)-z $f88(x,y,z,w) | x*y^7 + z*w^7 $f42(x,y,z) | x * sin(y)+z $f89(x,y,z,w) | x*y^8 + z*w^8 $f43(x,y,z) | x * sin(y)-z $f90(x,y,z,w) | x*y^9 + z*w^9 $f44(x,y,z) | x * cos(y)+z $f91(x,y,z,w) | (x and y) ? z $f45(x,y,z) | x * cos(y)-z $f92(x,y,z,w) | (x or y) ? z : w $f46(x,y,z) | x ? y : z $f93(x,y,z,w) | (x < y) ? z : w $f94(x,y,z,w) | (x <= y) ? z : w $f95(x,y,z,w) | (x > y) ? z : w $f96(x,y,z,w) | (x >= y) ? z : w $f97(x,y,z,w) | (x == y) ? z : w $f98(x,y,z,w) | x * sin(y) + z * cos(w) [EXPRTK NOTES] (00) Precision and performance of expression evaluations are the dominant principles of the ExprTk library. (01) Supported types are float, double and long double. (02) Standard mathematical operator precedence is applied (BEDMAS). (03) Supported user defined types are numeric and string variables and functions. (04) All variable and function names are case-insensitive (05) Variable and function names must begin with a letter (A-Z or a-z), then can be comprised of any combination of letters, digits and underscores. (eg: x, var1 or power_func99) (06) Expression lengths are limited only by storage capacity. (07) The life-time of objects registered with or created from a specific symbol-table must span at least the life-time of expressions generated using that symbol-table, otherwise the result will be undefined behavior. (08) Equal/Nequal are normalized equality routines, which use epsilons of 0.0000000001 and 0.000001 for double and float types respectively. (09) All trigonometric functions assume radian input unless stated otherwise. (10) Expressions may contain white-space characters such as space, tabs, new-lines, control-feed et al. ('\n', '\r', '\t', '\b', '\v', '\f') (11) Strings may be constructed from any letters, digits or special characters such as (~!@#$%^&*()[]|=+ ,./?<>;:"`~_), and must be enclosed with single-quotes. eg: 'Frankly, my dear, I don't give a damn!' (12) User defined normal functions can have up to 20 parameters, where as user defined vararg-functions can have an unlimited number of parameters. (13) The inbuilt polynomial functions can be at most of degree 12. (14) Where appropriate constant folding optimisations will be applied. (eg: The expression '2+(3-(x/y))' becomes '5-(x/y)') (15) String processing capabilities are available by default. To turn them off, the following needs to be defined at compile time: exprtk_disable_string_capabilities (16) Composited functions can call themselves or any other functions that have been previously defined. (17) Expressions may contain any of the following comment styles: 1. // .... \n 2. # .... \n 3. /* .... */ [SIMPLE EXPRTK EXAMPLE] --- snip --- #include <cstdio> #include <string> #include "exprtk.hpp" template <typename T> struct myfunc : public exprtk::ifunction<T> { myfunc() : exprtk::ifunction<T>(2) {} inline T operator()(const T& v1, const T& v2) { return T(1) + (v1 * v2) / T(3); } }; int main() { typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; typedef exprtk::parser_error::type error_t; std::string expression_str = "z := 2 myfunc([4+sin(x/pi)^3],y^2)"; double x = 1.1; double y = 2.2; double z = 3.3; myfunc<double> mf; symbol_table_t symbol_table; symbol_table.add_constants(); symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); symbol_table.add_variable("z",z); symbol_table.add_function("myfunc",mf); expression_t expression; expression.register_symbol_table(symbol_table); parser_t parser; if (!parser.compile(expression_str,expression)) { printf("Error: %s\tExpression: %s\n", parser.error().c_str(), expression_str.c_str()); for (std::size_t i = 0; i < parser.error_count(); ++i) { error_t error = parser.get_error(i); printf("Err: %02d Pos: %02d Type: [%s] Msg: %s Expr: %s\n", static_cast<int>(i), static_cast<int>(error.token.position), exprtk::parser_error::to_str(error.mode).c_str(), error.diagnostic.c_str(), expression_str.c_str()); } return 1; } double result = expression.value(); printf("Result: %10.5f\n",result); return 0; } --- snip --- [FILES] (00) Makefile (01) readme.txt (02) exprtk.hpp (03) exprtk_test.cpp (04) exprtk_benchmark.cpp
About
C++ Mathematical Expression Parsing And Evaluation Library https://www.partow.net/programming/exprtk/index.html
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- C++ 99.9%
- Makefile 0.1%