# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Callable import torch from tensordict import NestedKey, pad, set_lazy_legacy, TensorDictBase def _stack_output(fun) -> Callable: def stacked_output_fun(*args, **kwargs): out = fun(*args, **kwargs) return tuple(torch.stack(_o, 0) for _o in out) return stacked_output_fun def _stack_output_zip(fun) -> Callable: def stacked_output_fun(*args, **kwargs): out = fun(*args, **kwargs) return tuple(torch.stack(_o, 0) for _o in zip(*out)) return stacked_output_fun @set_lazy_legacy(False) def split_trajectories( rollout_tensordict: TensorDictBase, *, prefix=None, trajectory_key: NestedKey | None = None, done_key: NestedKey | None = None, as_nested: bool = False, ) -> TensorDictBase: """A util function for trajectory separation. Takes a tensordict with a key traj_ids that indicates the id of each trajectory. From there, builds a B x T x ... zero-padded tensordict with B batches on max duration T Args: rollout_tensordict (TensorDictBase): a rollout with adjacent trajectories along the last dimension. Keyword Args: prefix (NestedKey, optional): the prefix used to read and write meta-data, such as ``"traj_ids"`` (the optional integer id of each trajectory) and the ``"mask"`` entry indicating which data are valid and which aren't. Defaults to ``"collector"`` if the input has a ``"collector"`` entry, ``()`` (no prefix) otherwise. ``prefix`` is kept as a legacy feature and will be deprecated eventually. Prefer ``trajectory_key`` or ``done_key`` whenever possible. trajectory_key (NestedKey, optional): the key pointing to the trajectory ids. Supersedes ``done_key`` and ``prefix``. If not provided, defaults to ``(prefix, "traj_ids")``. done_key (NestedKey, optional): the key pointing to the ``"done""`` signal, if the trajectory could not be directly recovered. Defaults to ``"done"``. as_nested (bool or torch.layout, optional): whether to return the results as nested tensors. Defaults to ``False``. If a ``torch.layout`` is provided, it will be used to construct the nested tensor, otherwise the default layout will be used. .. note:: Using ``split_trajectories(tensordict, as_nested=True).to_padded_tensor(mask=mask_key)`` should result in the exact same result as ``as_nested=False``. Since this is an experimental feature and relies on nested_tensors, which API may change in the future, we made this an optional feature. The runtime should be faster with ``as_nested=True``. .. note:: Providing a layout lets the user control whether the nested tensor is to be used with ``torch.strided`` or ``torch.jagged`` layout. While the former has slightly more capabilities at the time of writing, the second will be the main focus of the PyTorch team in the future due to its better compatibility with :func:`~torch.compile`. Returns: A new tensordict with a leading dimension corresponding to the trajectory. A ``"mask"`` boolean entry sharing the ``trajectory_key`` prefix and the tensordict shape is also added. It indicated the valid elements of the tensordict, as well as a ``"traj_ids"`` entry if ``trajectory_key`` could not be found. Examples: >>> from tensordict import TensorDict >>> import torch >>> from torchrl.collectors.utils import split_trajectories >>> obs = torch.cat([torch.arange(10), torch.arange(5)]) >>> obs_ = torch.cat([torch.arange(1, 11), torch.arange(1, 6)]) >>> done = torch.zeros(15, dtype=torch.bool) >>> done[9] = True >>> trajectory_id = torch.cat([torch.zeros(10, dtype=torch.int32), ... torch.ones(5, dtype=torch.int32)]) >>> data = TensorDict({"obs": obs, ("next", "obs"): obs_, ("next", "done"): done, "trajectory": trajectory_id}, batch_size=[15]) >>> data_split = split_trajectories(data, done_key="done") >>> print(data_split) TensorDict( fields={ mask: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False), obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([2, 10]), device=None, is_shared=False), obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False), traj_ids: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False), trajectory: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([2, 10]), device=None, is_shared=False) >>> # check that split_trajectories got the trajectories right with the done signal >>> assert (data_split["traj_ids"] == data_split["trajectory"]).all() >>> print(data_split["mask"]) tensor([[ True, True, True, True, True, True, True, True, True, True], [ True, True, True, True, True, False, False, False, False, False]]) >>> data_split = split_trajectories(data, trajectory_key="trajectory") >>> print(data_split) TensorDict( fields={ mask: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False), obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False)}, batch_size=torch.Size([2, 10]), device=None, is_shared=False), obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False), trajectory: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int32, is_shared=False)}, batch_size=torch.Size([2, 10]), device=None, is_shared=False) """ mask_key = None if trajectory_key is not None: from torchrl.envs.utils import _replace_last traj_ids_key = trajectory_key mask_key = _replace_last(trajectory_key, "mask") else: if prefix is None and "collector" in rollout_tensordict.keys(): prefix = "collector" if prefix is None: traj_ids_key = "traj_ids" mask_key = "mask" else: traj_ids_key = (prefix, "traj_ids") mask_key = (prefix, "mask") rollout_tensordict = rollout_tensordict.copy() traj_ids = rollout_tensordict.get(traj_ids_key, None) if traj_ids is None: if done_key is None: done_key = "done" done_key = ("next", done_key) done = rollout_tensordict.get(done_key) idx = (slice(None),) * (rollout_tensordict.ndim - 1) + (slice(None, -1),) done_sel = done[idx] pads = [1, 0] pads = [0, 0] * (done.ndim - rollout_tensordict.ndim) + pads done_sel = torch.nn.functional.pad(done_sel, pads) if done_sel.shape != done.shape: raise RuntimeError( f"done and done_sel have different shape {done.shape} - {done_sel.shape} " ) traj_ids = done_sel.cumsum(rollout_tensordict.ndim - 1) traj_ids = traj_ids.squeeze(-1) if rollout_tensordict.ndim > 1: for i in range(1, rollout_tensordict.shape[0]): traj_ids[i] += traj_ids[i - 1].max() + 1 rollout_tensordict.set(traj_ids_key, traj_ids) splits = traj_ids.reshape(-1) splits = [(splits == i).sum().item() for i in splits.unique_consecutive()] # if all splits are identical then we can skip this function if len(set(splits)) == 1 and splits[0] == traj_ids.shape[-1]: rollout_tensordict.set( mask_key, torch.ones( rollout_tensordict.shape, device=rollout_tensordict.device, dtype=torch.bool, ), ) if rollout_tensordict.ndimension() == 1: rollout_tensordict = rollout_tensordict.unsqueeze(0) return rollout_tensordict out_splits = rollout_tensordict.reshape(-1) if as_nested: if hasattr(torch, "_nested_compute_contiguous_strides_offsets"): def nest(x, splits=splits): # Convert splits into shapes shape = torch.tensor([[int(split), *x.shape[1:]] for split in splits]) return torch._nested_view_from_buffer( x.reshape(-1), shape, *torch._nested_compute_contiguous_strides_offsets(shape), ) return out_splits._fast_apply( nest, batch_size=[len(splits), -1], ) else: out_splits = out_splits.split(splits, 0) layout = as_nested if as_nested is not bool else None if torch.__version__ < "2.4": # Layout must be True, there is no other layout available if layout not in (True,): raise RuntimeError( f"layout={layout} is only available for torch>=v2.4" ) def nest(*x): return torch.nested.nested_tensor(list(x)) else: def nest(*x): return torch.nested.nested_tensor(list(x), layout=layout) return out_splits[0]._fast_apply( nest, *out_splits[1:], batch_size=[len(out_splits), *out_splits[0].batch_size[:-1], -1], ) out_splits = out_splits.split(splits, 0) for out_split in out_splits: out_split.set( mask_key, torch.ones( out_split.shape, dtype=torch.bool, device=out_split.device, ), ) if len(out_splits) > 1: MAX = max(*[out_split.shape[0] for out_split in out_splits]) else: MAX = out_splits[0].shape[0] td = torch.stack( [pad(out_split, [0, MAX - out_split.shape[0]]) for out_split in out_splits], 0 ) return td