# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import contextlib import functools import importlib import os import pickle import sys from functools import partial from unittest import mock import numpy as np import pytest import torch from _utils_internal import get_default_devices, make_tc from packaging import version from packaging.version import parse from tensordict import ( assert_allclose_td, is_tensor_collection, is_tensorclass, tensorclass, TensorDict, TensorDictBase, ) from torch import multiprocessing as mp from torch.utils._pytree import tree_flatten, tree_map from torchrl.collectors import RandomPolicy, SyncDataCollector from torchrl.collectors.utils import split_trajectories from torchrl.data import ( MultiStep, PrioritizedReplayBuffer, RemoteTensorDictReplayBuffer, ReplayBuffer, ReplayBufferEnsemble, TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer, ) from torchrl.data.replay_buffers import samplers, writers from torchrl.data.replay_buffers.samplers import ( PrioritizedSampler, PrioritizedSliceSampler, RandomSampler, SamplerEnsemble, SamplerWithoutReplacement, SliceSampler, SliceSamplerWithoutReplacement, ) from torchrl.data.replay_buffers.storages import ( LazyMemmapStorage, LazyTensorStorage, ListStorage, StorageEnsemble, TensorStorage, ) from torchrl.data.replay_buffers.writers import ( RoundRobinWriter, TensorDictMaxValueWriter, TensorDictRoundRobinWriter, WriterEnsemble, ) from torchrl.envs import GymEnv, SerialEnv from torchrl.envs.transforms.transforms import ( BinarizeReward, CatFrames, CatTensors, CenterCrop, Compose, DiscreteActionProjection, DoubleToFloat, FiniteTensorDictCheck, FlattenObservation, GrayScale, gSDENoise, ObservationNorm, PinMemoryTransform, RenameTransform, Resize, RewardClipping, RewardScaling, SqueezeTransform, ToTensorImage, UnsqueezeTransform, VecNorm, ) OLD_TORCH = parse(torch.__version__) < parse("2.0.0") _has_tv = importlib.util.find_spec("torchvision") is not None _has_gym = importlib.util.find_spec("gym") is not None _has_snapshot = importlib.util.find_spec("torchsnapshot") is not None _os_is_windows = sys.platform == "win32" torch_2_3 = version.parse( ".".join([str(s) for s in version.parse(str(torch.__version__)).release]) ) >= version.parse("2.3.0") @pytest.mark.parametrize( "sampler", [samplers.RandomSampler, samplers.PrioritizedSampler] ) @pytest.mark.parametrize( "writer", [writers.RoundRobinWriter, writers.TensorDictMaxValueWriter] ) @pytest.mark.parametrize( "rb_type,storage,datatype", [ [ReplayBuffer, ListStorage, None], [TensorDictReplayBuffer, ListStorage, "tensordict"], [RemoteTensorDictReplayBuffer, ListStorage, "tensordict"], [ReplayBuffer, LazyTensorStorage, "tensor"], [ReplayBuffer, LazyTensorStorage, "tensordict"], [ReplayBuffer, LazyTensorStorage, "pytree"], [TensorDictReplayBuffer, LazyTensorStorage, "tensordict"], [RemoteTensorDictReplayBuffer, LazyTensorStorage, "tensordict"], [ReplayBuffer, LazyMemmapStorage, "tensor"], [ReplayBuffer, LazyMemmapStorage, "tensordict"], [ReplayBuffer, LazyMemmapStorage, "pytree"], [TensorDictReplayBuffer, LazyMemmapStorage, "tensordict"], [RemoteTensorDictReplayBuffer, LazyMemmapStorage, "tensordict"], ], ) @pytest.mark.parametrize("size", [3, 5, 100]) class TestComposableBuffers: def _get_rb(self, rb_type, size, sampler, writer, storage): if storage is not None: storage = storage(size) sampler_args = {} if sampler is samplers.PrioritizedSampler: sampler_args = {"max_capacity": size, "alpha": 0.8, "beta": 0.9} sampler = sampler(**sampler_args) writer = writer() rb = rb_type(storage=storage, sampler=sampler, writer=writer, batch_size=3) return rb def _get_datum(self, datatype): if datatype is None: data = torch.randint(100, (1,)) elif datatype == "tensor": data = torch.randint(100, (1,)) elif datatype == "tensordict": data = TensorDict( {"a": torch.randint(100, (1,)), "next": {"reward": torch.randn(1)}}, [] ) elif datatype == "pytree": data = { "a": torch.randint(100, (1,)), "b": {"c": [torch.zeros(3), (torch.ones(2),)]}, 30: torch.zeros(2), } else: raise NotImplementedError(datatype) return data def _get_data(self, datatype, size): if datatype is None: data = torch.randint(100, (size, 1)) elif datatype == "tensor": data = torch.randint(100, (size, 1)) elif datatype == "tensordict": data = TensorDict( { "a": torch.randint(100, (size, 1)), "next": {"reward": torch.randn(size, 1)}, }, [size], ) elif datatype == "pytree": data = { "a": torch.randint(100, (size, 1)), "b": {"c": [torch.zeros(size, 3), (torch.ones(size, 2),)]}, 30: torch.zeros(size, 2), } else: raise NotImplementedError(datatype) return data def test_add(self, rb_type, sampler, writer, storage, size, datatype): if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows: pytest.skip( "Distributed package support on Windows is a prototype feature and is subject to changes." ) torch.manual_seed(0) rb = self._get_rb( rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size ) data = self._get_datum(datatype) if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter: with pytest.raises( RuntimeError, match="expects data to be a tensor collection" ): rb.add(data) return rb.add(data) s, info = rb.sample(1, return_info=True) assert len(rb) == 1 if isinstance(s, (torch.Tensor, TensorDictBase)): assert s.ndim, s s = s[0] else: def assert_ndim(tensor): assert tensor.shape[0] == 1 tree_map(assert_ndim, s) s = tree_map(lambda s: s[0], s) if isinstance(s, TensorDictBase): s = s.select(*data.keys(True), strict=False) data = data.select(*s.keys(True), strict=False) assert (s == data).all() assert list(s.keys(True, True)) else: flat_s = tree_flatten(s)[0] flat_data = tree_flatten(data)[0] assert all((_s == _data).all() for (_s, _data) in zip(flat_s, flat_data)) def test_cursor_position(self, rb_type, sampler, writer, storage, size, datatype): storage = storage(size) writer = writer() writer.register_storage(storage) batch1 = self._get_data(datatype, size=5) cond = ( OLD_TORCH and not isinstance(writer, TensorDictMaxValueWriter) and size < len(batch1) and isinstance(storage, TensorStorage) ) if not is_tensor_collection(batch1) and isinstance( writer, TensorDictMaxValueWriter ): with pytest.raises( RuntimeError, match="expects data to be a tensor collection" ): writer.extend(batch1) return with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): writer.extend(batch1) # Added less data than storage max size if size > 5: assert writer._cursor == 5 # Added more data than storage max size elif size < 5: # if Max writer, we don't necessarily overwrite existing values so # we just check that the cursor is before the threshold if isinstance(writer, TensorDictMaxValueWriter): assert writer._cursor <= 5 - size else: assert writer._cursor == 5 - size # Added as data as storage max size else: assert writer._cursor == 0 if not isinstance(writer, TensorDictMaxValueWriter): batch2 = self._get_data(datatype, size=size - 1) writer.extend(batch2) assert writer._cursor == size - 1 def test_extend(self, rb_type, sampler, writer, storage, size, datatype): if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows: pytest.skip( "Distributed package support on Windows is a prototype feature and is subject to changes." ) torch.manual_seed(0) rb = self._get_rb( rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size ) data_shape = 5 data = self._get_data(datatype, size=data_shape) cond = ( OLD_TORCH and writer is not TensorDictMaxValueWriter and size < len(data) and isinstance(rb._storage, TensorStorage) ) if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter: with pytest.raises( RuntimeError, match="expects data to be a tensor collection" ): rb.extend(data) return length = min(rb._storage.max_size, len(rb) + data_shape) if writer is TensorDictMaxValueWriter: data["next", "reward"][-length:] = 1_000_000 with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) length = len(rb) if is_tensor_collection(data): data_iter = data[-length:] else: def data_iter(): for t in range(-length, -1): yield tree_map(lambda x, t=t: x[t], data) data_iter = data_iter() for d in data_iter: for b in rb._storage: if isinstance(b, TensorDictBase): keys = set(d.keys()).intersection(b.keys()) b = b.exclude("index").select(*keys, strict=False) keys = set(d.keys()).intersection(b.keys()) d = d.select(*keys, strict=False) if isinstance(b, (torch.Tensor, TensorDictBase)): value = b == d value = value.all() else: d_flat = tree_flatten(d)[0] b_flat = tree_flatten(b)[0] value = all((_b == _d).all() for (_b, _d) in zip(b_flat, d_flat)) if value: break else: raise RuntimeError("did not find match") data2 = self._get_data(datatype, size=2 * size + 2) cond = ( OLD_TORCH and writer is not TensorDictMaxValueWriter and size < len(data2) and isinstance(rb._storage, TensorStorage) ) with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data2) def test_sample(self, rb_type, sampler, writer, storage, size, datatype): if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows: pytest.skip( "Distributed package support on Windows is a prototype feature and is subject to changes." ) torch.manual_seed(0) rb = self._get_rb( rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size ) data = self._get_data(datatype, size=5) cond = ( OLD_TORCH and writer is not TensorDictMaxValueWriter and size < len(data) and isinstance(rb._storage, TensorStorage) ) if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter: with pytest.raises( RuntimeError, match="expects data to be a tensor collection" ): rb.extend(data) return with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) rb_sample = rb.sample() # if not isinstance(new_data, (torch.Tensor, TensorDictBase)): # new_data = new_data[0] if is_tensor_collection(data) or isinstance(data, torch.Tensor): rb_sample_iter = rb_sample else: def data_iter_func(maxval, data=data): for t in range(maxval): yield tree_map(lambda x, t=t: x[t], data) rb_sample_iter = data_iter_func(rb._batch_size, rb_sample) for single_sample in rb_sample_iter: if is_tensor_collection(data) or isinstance(data, torch.Tensor): data_iter = data else: data_iter = data_iter_func(5, data) for data_sample in data_iter: if isinstance(data_sample, TensorDictBase): keys = set(single_sample.keys()).intersection(data_sample.keys()) data_sample = data_sample.exclude("index").select( *keys, strict=False ) keys = set(single_sample.keys()).intersection(data_sample.keys()) single_sample = single_sample.select(*keys, strict=False) if isinstance(data_sample, (torch.Tensor, TensorDictBase)): value = data_sample == single_sample value = value.all() else: d_flat = tree_flatten(single_sample)[0] b_flat = tree_flatten(data_sample)[0] value = all((_b == _d).all() for (_b, _d) in zip(b_flat, d_flat)) if value: break else: raise RuntimeError("did not find match") def test_index(self, rb_type, sampler, writer, storage, size, datatype): if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows: pytest.skip( "Distributed package support on Windows is a prototype feature and is subject to changes." ) torch.manual_seed(0) rb = self._get_rb( rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size ) data = self._get_data(datatype, size=5) cond = ( OLD_TORCH and writer is not TensorDictMaxValueWriter and size < len(data) and isinstance(rb._storage, TensorStorage) ) if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter: with pytest.raises( RuntimeError, match="expects data to be a tensor collection" ): rb.extend(data) return with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) d1 = rb[2] d2 = rb._storage[2] if type(d1) is not type(d2): d1 = d1[0] if is_tensor_collection(data) or isinstance(data, torch.Tensor): b = d1 == d2 if not isinstance(b, bool): b = b.all() else: d1_flat = tree_flatten(d1)[0] d2_flat = tree_flatten(d2)[0] b = all((_d1 == _d2).all() for (_d1, _d2) in zip(d1_flat, d2_flat)) assert b def test_pickable(self, rb_type, sampler, writer, storage, size, datatype): rb = self._get_rb( rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size ) serialized = pickle.dumps(rb) rb2 = pickle.loads(serialized) assert rb.__dict__.keys() == rb2.__dict__.keys() for key in sorted(rb.__dict__.keys()): assert isinstance(rb.__dict__[key], type(rb2.__dict__[key])) class TestStorages: def _get_tensor(self): return torch.randn(10, 11) def _get_tensordict(self): return TensorDict( {"data": torch.randn(10, 11), ("nested", "data"): torch.randn(10, 11, 3)}, [10, 11], ) def _get_pytree(self): return { "a": torch.randint(100, (10, 11, 1)), "b": {"c": [torch.zeros(10, 11), (torch.ones(10, 11),)]}, 30: torch.zeros(10, 11), } def _get_tensorclass(self): data = self._get_tensordict() return make_tc(data)(**data, batch_size=data.shape) @pytest.mark.parametrize("storage_type", [TensorStorage]) def test_errors(self, storage_type): with pytest.raises(ValueError, match="Expected storage to be non-null"): storage_type(None) data = torch.randn(3) with pytest.raises( ValueError, match="The max-size and the storage shape mismatch" ): storage_type(data, max_size=4) @pytest.mark.parametrize( "data_type", ["tensor", "tensordict", "tensorclass", "pytree"] ) @pytest.mark.parametrize("storage_type", [TensorStorage]) def test_get_set(self, storage_type, data_type): if data_type == "tensor": data = self._get_tensor() elif data_type == "tensorclass": data = self._get_tensorclass() elif data_type == "tensordict": data = self._get_tensordict() elif data_type == "pytree": data = self._get_pytree() else: raise NotImplementedError storage = storage_type(data) if data_type == "pytree": storage.set(range(10), tree_map(torch.zeros_like, data)) def check(x): assert (x == 0).all() tree_map(check, storage.get(range(10))) else: storage.set(range(10), torch.zeros_like(data)) assert (storage.get(range(10)) == 0).all() @pytest.mark.parametrize( "data_type", ["tensor", "tensordict", "tensorclass", "pytree"] ) @pytest.mark.parametrize("storage_type", [TensorStorage]) def test_state_dict(self, storage_type, data_type): if data_type == "tensor": data = self._get_tensor() elif data_type == "tensorclass": data = self._get_tensorclass() elif data_type == "tensordict": data = self._get_tensordict() elif data_type == "pytree": data = self._get_pytree() else: raise NotImplementedError storage = storage_type(data) if data_type == "pytree": with pytest.raises(TypeError, match="are not supported by"): storage.state_dict() return sd = storage.state_dict() storage2 = storage_type(torch.zeros_like(data)) storage2.load_state_dict(sd) assert (storage.get(range(10)) == storage2.get(range(10))).all() assert type(storage.get(range(10))) is type( # noqa: E721 storage2.get(range(10)) ) @pytest.mark.skipif( not torch.cuda.device_count(), reason="not cuda device found to test rb storage.", ) @pytest.mark.parametrize( "device_data,device_storage", [ [torch.device("cuda"), torch.device("cpu")], [torch.device("cpu"), torch.device("cuda")], [torch.device("cpu"), "auto"], [torch.device("cuda"), "auto"], ], ) @pytest.mark.parametrize("storage_type", [LazyMemmapStorage, LazyTensorStorage]) @pytest.mark.parametrize("data_type", ["tensor", "tc", "td"]) def test_storage_device(self, device_data, device_storage, storage_type, data_type): @tensorclass class TC: a: torch.Tensor if data_type == "tensor": data = torch.randn(3, device=device_data) elif data_type == "td": data = TensorDict( {"a": torch.randn(3, device=device_data)}, [], device=device_data ) elif data_type == "tc": data = TC( a=torch.randn(3, device=device_data), batch_size=[], device=device_data, ) else: raise NotImplementedError storage = storage_type(max_size=10, device=device_storage) if device_storage == "auto": device_storage = device_data if storage_type is LazyMemmapStorage and device_storage.type == "cuda": with pytest.warns( DeprecationWarning, match="Support for Memmap device other than CPU" ): # this is rather brittle and will fail with some indices # when both device (storage and data) don't match (eg, range()) storage.set(0, data) else: storage.set(0, data) assert storage.get(0).device.type == device_storage.type @pytest.mark.parametrize("storage_in", ["tensor", "memmap"]) @pytest.mark.parametrize("storage_out", ["tensor", "memmap"]) @pytest.mark.parametrize("init_out", [True, False]) @pytest.mark.parametrize( "backend", ["torch"] + (["torchsnapshot"] if _has_snapshot else []) ) def test_storage_state_dict(self, storage_in, storage_out, init_out, backend): os.environ["CKPT_BACKEND"] = backend buffer_size = 100 if storage_in == "memmap": storage_in = LazyMemmapStorage(buffer_size, device="cpu") elif storage_in == "tensor": storage_in = LazyTensorStorage(buffer_size, device="cpu") if storage_out == "memmap": storage_out = LazyMemmapStorage(buffer_size, device="cpu") elif storage_out == "tensor": storage_out = LazyTensorStorage(buffer_size, device="cpu") replay_buffer = TensorDictReplayBuffer( pin_memory=False, prefetch=3, storage=storage_in, batch_size=3 ) # fill replay buffer with random data transition = TensorDict( { "observation": torch.ones(1, 4), "action": torch.ones(1, 2), "reward": torch.ones(1, 1), "dones": torch.ones(1, 1), "next": {"observation": torch.ones(1, 4)}, }, batch_size=1, ) for _ in range(3): replay_buffer.extend(transition) state_dict = replay_buffer.state_dict() new_replay_buffer = TensorDictReplayBuffer( pin_memory=False, prefetch=3, storage=storage_out, batch_size=state_dict["_batch_size"], ) if init_out: new_replay_buffer.extend(transition) new_replay_buffer.load_state_dict(state_dict) s = new_replay_buffer.sample() assert (s.exclude("index") == 1).all() @pytest.mark.parametrize("device_data", get_default_devices()) @pytest.mark.parametrize("storage_type", [LazyMemmapStorage, LazyTensorStorage]) @pytest.mark.parametrize("data_type", ["tensor", "tc", "td", "pytree"]) @pytest.mark.parametrize("isinit", [True, False]) def test_storage_dumps_loads( self, device_data, storage_type, data_type, isinit, tmpdir ): torch.manual_seed(0) dir_rb = tmpdir / "rb" dir_save = tmpdir / "save" dir_rb.mkdir() dir_save.mkdir() torch.manual_seed(0) @tensorclass class TC: tensor: torch.Tensor td: TensorDict text: str if data_type == "tensor": data = torch.randint(10, (3,), device=device_data) elif data_type == "pytree": data = { "a": torch.randint(10, (3,), device=device_data), "b": {"c": [torch.ones(3), (-torch.ones(3, 2),)]}, 30: -torch.ones(3, 1), } elif data_type == "td": data = TensorDict( { "a": torch.randint(10, (3,), device=device_data), "b": TensorDict( {"c": torch.randint(10, (3,), device=device_data)}, batch_size=[3], ), }, batch_size=[3], device=device_data, ) elif data_type == "tc": data = TC( tensor=torch.randint(10, (3,), device=device_data), td=TensorDict( {"c": torch.randint(10, (3,), device=device_data)}, batch_size=[3] ), text="some text", batch_size=[3], device=device_data, ) else: raise NotImplementedError if storage_type in (LazyMemmapStorage,): storage = storage_type(max_size=10, scratch_dir=dir_rb) else: storage = storage_type(max_size=10) # We cast the device to CPU as CUDA isn't automatically cast to CPU when using range() index if data_type == "pytree": storage.set(range(3), tree_map(lambda x: x.cpu(), data)) else: storage.set(range(3), data.cpu()) storage.dumps(dir_save) # check we can dump twice storage.dumps(dir_save) storage_recover = storage_type(max_size=10) if isinit: if data_type == "pytree": storage_recover.set( range(3), tree_map(lambda x: x.cpu().clone().zero_(), data) ) else: storage_recover.set(range(3), data.cpu().clone().zero_()) if data_type in ("tensor", "pytree") and not isinit: with pytest.raises( RuntimeError, match="Cannot fill a non-initialized pytree-based TensorStorage", ): storage_recover.loads(dir_save) return storage_recover.loads(dir_save) # tree_map with more than one pytree is only available in torch >= 2.3 if torch_2_3: if data_type in ("tensor", "pytree"): tree_map( torch.testing.assert_close, tree_flatten(storage[:])[0], tree_flatten(storage_recover[:])[0], ) else: assert_allclose_td(storage[:], storage_recover[:]) if data == "tc": assert storage._storage.text == storage_recover._storage.text @pytest.mark.parametrize("max_size", [1000]) @pytest.mark.parametrize("shape", [[3, 4]]) @pytest.mark.parametrize("storage", [LazyTensorStorage, LazyMemmapStorage]) class TestLazyStorages: def _get_nested_tensorclass(self, shape): @tensorclass class NestedTensorClass: key1: torch.Tensor key2: torch.Tensor @tensorclass class TensorClass: key1: torch.Tensor key2: torch.Tensor next: NestedTensorClass return TensorClass( key1=torch.ones(*shape), key2=torch.ones(*shape), next=NestedTensorClass( key1=torch.ones(*shape), key2=torch.ones(*shape), batch_size=shape ), batch_size=shape, ) def _get_nested_td(self, shape): nested_td = TensorDict( { "key1": torch.ones(*shape), "key2": torch.ones(*shape), "next": TensorDict( { "key1": torch.ones(*shape), "key2": torch.ones(*shape), }, shape, ), }, shape, ) return nested_td def test_init(self, max_size, shape, storage): td = self._get_nested_td(shape) mystorage = storage(max_size=max_size) mystorage._init(td) assert mystorage._storage.shape == (max_size, *shape) def test_set(self, max_size, shape, storage): td = self._get_nested_td(shape) mystorage = storage(max_size=max_size) mystorage.set(list(range(td.shape[0])), td) assert mystorage._storage.shape == (max_size, *shape[1:]) idx = list(range(1, td.shape[0] - 1)) tc_sample = mystorage.get(idx) assert tc_sample.shape == torch.Size([td.shape[0] - 2, *td.shape[1:]]) def test_init_tensorclass(self, max_size, shape, storage): tc = self._get_nested_tensorclass(shape) mystorage = storage(max_size=max_size) mystorage._init(tc) assert is_tensorclass(mystorage._storage) assert mystorage._storage.shape == (max_size, *shape) def test_set_tensorclass(self, max_size, shape, storage): tc = self._get_nested_tensorclass(shape) mystorage = storage(max_size=max_size) mystorage.set(list(range(tc.shape[0])), tc) assert mystorage._storage.shape == (max_size, *shape[1:]) idx = list(range(1, tc.shape[0] - 1)) tc_sample = mystorage.get(idx) assert tc_sample.shape == torch.Size([tc.shape[0] - 2, *tc.shape[1:]]) def test_extend_list_pytree(self, max_size, shape, storage): memory = ReplayBuffer( storage=storage(max_size=max_size), sampler=SamplerWithoutReplacement(), ) data = [ ( torch.full(shape, i), {"a": torch.full(shape, i), "b": (torch.full(shape, i))}, [torch.full(shape, i)], ) for i in range(10) ] memory.extend(data) assert len(memory) == 10 assert len(memory._storage) == 10 sample = memory.sample(10) for leaf in torch.utils._pytree.tree_leaves(sample): assert (leaf.unique(sorted=True) == torch.arange(10)).all() memory = ReplayBuffer( storage=storage(max_size=max_size), sampler=SamplerWithoutReplacement(), ) t1x4 = torch.Tensor([0.1, 0.2, 0.3, 0.4]) t1x1 = torch.Tensor([0.01]) with pytest.raises( RuntimeError, match="Stacking the elements of the list resulted in an error" ): memory.extend([t1x4, t1x1, t1x4 + 0.4, t1x1 + 0.01]) @pytest.mark.parametrize("priority_key", ["pk", "td_error"]) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", get_default_devices()) def test_ptdrb(priority_key, contiguous, device): torch.manual_seed(0) np.random.seed(0) rb = TensorDictReplayBuffer( sampler=samplers.PrioritizedSampler(5, alpha=0.7, beta=0.9), priority_key=priority_key, batch_size=5, ) td1 = TensorDict( source={ "a": torch.randn(3, 1), priority_key: torch.rand(3, 1) / 10, "_idx": torch.arange(3).view(3, 1), }, batch_size=[3], device=device, ) rb.extend(td1) s = rb.sample() assert s.batch_size == torch.Size([5]) assert (td1[s.get("_idx").squeeze()].get("a") == s.get("a")).all() assert_allclose_td(td1[s.get("_idx").squeeze()].select("a"), s.select("a")) # test replacement td2 = TensorDict( source={ "a": torch.randn(5, 1), priority_key: torch.rand(5, 1) / 10, "_idx": torch.arange(5).view(5, 1), }, batch_size=[5], device=device, ) rb.extend(td2) s = rb.sample() assert s.batch_size == torch.Size([5]) assert (td2[s.get("_idx").squeeze()].get("a") == s.get("a")).all() assert_allclose_td(td2[s.get("_idx").squeeze()].select("a"), s.select("a")) # test strong update # get all indices that match first item idx = s.get("_idx") idx_match = (idx == idx[0]).nonzero()[:, 0] s.set_at_( priority_key, torch.ones(idx_match.numel(), 1, device=device) * 100000000, idx_match, ) val = s.get("a")[0] idx0 = s.get("_idx")[0] rb.update_tensordict_priority(s) s = rb.sample() assert (val == s.get("a")).sum() >= 1 torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1)) # test updating values of original td td2.set_("a", torch.ones_like(td2.get("a"))) s = rb.sample() torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1)) @pytest.mark.parametrize("stack", [False, True]) @pytest.mark.parametrize("datatype", ["tc", "tb"]) @pytest.mark.parametrize("reduction", ["min", "max", "median", "mean"]) def test_replay_buffer_trajectories(stack, reduction, datatype): traj_td = TensorDict( {"obs": torch.randn(3, 4, 5), "actions": torch.randn(3, 4, 2)}, batch_size=[3, 4], ) rbcls = functools.partial(TensorDictReplayBuffer, priority_key="td_error") if datatype == "tc": c = make_tc(traj_td) rbcls = functools.partial(ReplayBuffer, storage=LazyTensorStorage(100)) traj_td = c(**traj_td, batch_size=traj_td.batch_size) assert is_tensorclass(traj_td) elif datatype != "tb": raise NotImplementedError if stack: traj_td = torch.stack(list(traj_td), 0) rb = rbcls( sampler=samplers.PrioritizedSampler( 5, alpha=0.7, beta=0.9, reduction=reduction, ), batch_size=3, ) rb.extend(traj_td) if datatype == "tc": sampled_td, info = rb.sample(return_info=True) index = info["index"] else: sampled_td = rb.sample() if datatype == "tc": assert is_tensorclass(traj_td) return sampled_td.set("td_error", torch.rand(sampled_td.shape)) if datatype == "tc": rb.update_priority(index, sampled_td) sampled_td, info = rb.sample(return_info=True) assert (info["_weight"] > 0).all() assert sampled_td.batch_size == torch.Size([3, 4]) else: rb.update_tensordict_priority(sampled_td) sampled_td = rb.sample(include_info=True) assert (sampled_td.get("_weight") > 0).all() assert sampled_td.batch_size == torch.Size([3, 4]) # # set back the trajectory length # sampled_td_filtered = sampled_td.to_tensordict().exclude( # "_weight", "index", "td_error" # ) # sampled_td_filtered.batch_size = [3, 4] @pytest.mark.parametrize( "rbtype,storage", [ (ReplayBuffer, None), (ReplayBuffer, ListStorage), (PrioritizedReplayBuffer, None), (PrioritizedReplayBuffer, ListStorage), (TensorDictReplayBuffer, None), (TensorDictReplayBuffer, ListStorage), (TensorDictReplayBuffer, LazyTensorStorage), (TensorDictReplayBuffer, LazyMemmapStorage), (TensorDictPrioritizedReplayBuffer, None), (TensorDictPrioritizedReplayBuffer, ListStorage), (TensorDictPrioritizedReplayBuffer, LazyTensorStorage), (TensorDictPrioritizedReplayBuffer, LazyMemmapStorage), ], ) @pytest.mark.parametrize("size", [3, 5, 100]) @pytest.mark.parametrize("prefetch", [0]) class TestBuffers: _default_params_rb = {} _default_params_td_rb = {} _default_params_prb = {"alpha": 0.8, "beta": 0.9} _default_params_td_prb = {"alpha": 0.8, "beta": 0.9} def _get_rb(self, rbtype, size, storage, prefetch): if storage is not None: storage = storage(size) if rbtype is ReplayBuffer: params = self._default_params_rb elif rbtype is PrioritizedReplayBuffer: params = self._default_params_prb elif rbtype is TensorDictReplayBuffer: params = self._default_params_td_rb elif rbtype is TensorDictPrioritizedReplayBuffer: params = self._default_params_td_prb else: raise NotImplementedError(rbtype) rb = rbtype(storage=storage, prefetch=prefetch, batch_size=3, **params) return rb def _get_datum(self, rbtype): if rbtype is ReplayBuffer: data = torch.randint(100, (1,)) elif rbtype is PrioritizedReplayBuffer: data = torch.randint(100, (1,)) elif rbtype is TensorDictReplayBuffer: data = TensorDict({"a": torch.randint(100, (1,))}, []) elif rbtype is TensorDictPrioritizedReplayBuffer: data = TensorDict({"a": torch.randint(100, (1,))}, []) else: raise NotImplementedError(rbtype) return data def _get_data(self, rbtype, size): if rbtype is ReplayBuffer: data = [torch.randint(100, (1,)) for _ in range(size)] elif rbtype is PrioritizedReplayBuffer: data = [torch.randint(100, (1,)) for _ in range(size)] elif rbtype is TensorDictReplayBuffer: data = TensorDict( { "a": torch.randint(100, (size,)), "b": TensorDict({"c": torch.randint(100, (size,))}, [size]), }, [size], ) elif rbtype is TensorDictPrioritizedReplayBuffer: data = TensorDict( { "a": torch.randint(100, (size,)), "b": TensorDict({"c": torch.randint(100, (size,))}, [size]), }, [size], ) else: raise NotImplementedError(rbtype) return data def test_cursor_position2(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) batch1 = self._get_data(rbtype, size=5) cond = ( OLD_TORCH and size < len(batch1) and isinstance(rb._storage, TensorStorage) ) with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(batch1) # Added fewer data than storage max size if size > 5 or storage is None: assert rb._writer._cursor == 5 # Added more data than storage max size elif size < 5: assert rb._writer._cursor == 5 - size # Added as data as storage max size else: assert rb._writer._cursor == 0 batch2 = self._get_data(rbtype, size=size - 1) rb.extend(batch2) assert rb._writer._cursor == size - 1 def test_add(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_datum(rbtype) rb.add(data) s = rb.sample(1)[0] if isinstance(s, TensorDictBase): s = s.select(*data.keys(True), strict=False) data = data.select(*s.keys(True), strict=False) assert (s == data).all() assert list(s.keys(True, True)) else: assert (s == data).all() def test_empty(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_datum(rbtype) for _ in range(2): rb.add(data) s = rb.sample(1)[0] if isinstance(s, TensorDictBase): s = s.select(*data.keys(True), strict=False) data = data.select(*s.keys(True), strict=False) assert (s == data).all() assert list(s.keys(True, True)) else: assert (s == data).all() rb.empty() with pytest.raises( RuntimeError, match="Cannot sample from an empty storage" ): rb.sample() def test_extend(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_data(rbtype, size=5) cond = OLD_TORCH and size < len(data) and isinstance(rb._storage, TensorStorage) with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) length = len(rb) for d in data[-length:]: found_similar = False for b in rb._storage: if isinstance(b, TensorDictBase): keys = set(d.keys()).intersection(b.keys()) b = b.exclude("index").select(*keys, strict=False) keys = set(d.keys()).intersection(b.keys()) d = d.select(*keys, strict=False) value = b == d if isinstance(value, (torch.Tensor, TensorDictBase)): value = value.all() if value: break else: raise RuntimeError("did not find match") def test_sample(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_data(rbtype, size=5) cond = OLD_TORCH and size < len(data) and isinstance(rb._storage, TensorStorage) with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) new_data = rb.sample() if not isinstance(new_data, (torch.Tensor, TensorDictBase)): new_data = new_data[0] for d in new_data: found_similar = False for b in data: if isinstance(b, TensorDictBase): keys = set(d.keys()).intersection(b.keys()) b = b.exclude("index").select(*keys, strict=False) keys = set(d.keys()).intersection(b.keys()) d = d.select(*keys, strict=False) value = b == d if isinstance(value, (torch.Tensor, TensorDictBase)): value = value.all() if value: break else: raise RuntimeError("did not find matching value") def test_index(self, rbtype, storage, size, prefetch): torch.manual_seed(0) rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_data(rbtype, size=5) cond = OLD_TORCH and size < len(data) and isinstance(rb._storage, TensorStorage) with pytest.warns( UserWarning, match="A cursor of length superior to the storage capacity was provided", ) if cond else contextlib.nullcontext(): rb.extend(data) d1 = rb[2] d2 = rb._storage[2] if type(d1) is not type(d2): d1 = d1[0] b = d1 == d2 if not isinstance(b, bool): b = b.all() assert b def test_index_nonfull(self, rbtype, storage, size, prefetch): # checks that indexing the buffer before it's full gives the accurate view of the data rb = self._get_rb(rbtype, storage=storage, size=size, prefetch=prefetch) data = self._get_data(rbtype, size=size - 1) rb.extend(data) assert len(rb[: size - 1]) == size - 1 assert len(rb[size - 2 :]) == 1 def test_multi_loops(): """Tests that one can iterate multiple times over a buffer without rep.""" rb = ReplayBuffer( batch_size=5, storage=ListStorage(10), sampler=SamplerWithoutReplacement() ) rb.extend(torch.zeros(10)) for i, d in enumerate(rb): # noqa: B007 assert (d == 0).all() assert i == 1 for i, d in enumerate(rb): # noqa: B007 assert (d == 0).all() assert i == 1 def test_batch_errors(): """Tests error messages related to batch-size""" rb = ReplayBuffer( storage=ListStorage(10), sampler=SamplerWithoutReplacement(drop_last=False) ) rb.extend(torch.zeros(10)) rb.sample(3) # that works with pytest.raises( RuntimeError, match="Cannot iterate over the replay buffer. Batch_size was not specified", ): for _ in rb: pass with pytest.raises(RuntimeError, match="batch_size not specified"): rb.sample() with pytest.raises(ValueError, match="Samplers with drop_last=True"): ReplayBuffer( storage=ListStorage(10), sampler=SamplerWithoutReplacement(drop_last=True) ) # that works ReplayBuffer( storage=ListStorage(10), ) rb = ReplayBuffer( storage=ListStorage(10), sampler=SamplerWithoutReplacement(drop_last=False), batch_size=3, ) rb.extend(torch.zeros(10)) for _ in rb: pass rb.sample() @pytest.mark.parametrize("priority_key", ["pk", "td_error"]) @pytest.mark.parametrize("contiguous", [True, False]) @pytest.mark.parametrize("device", get_default_devices()) def test_prb(priority_key, contiguous, device): torch.manual_seed(0) np.random.seed(0) rb = TensorDictPrioritizedReplayBuffer( alpha=0.7, beta=0.9, priority_key=priority_key, storage=ListStorage(5), batch_size=5, ) td1 = TensorDict( source={ "a": torch.randn(3, 1), priority_key: torch.rand(3, 1) / 10, "_idx": torch.arange(3).view(3, 1), }, batch_size=[3], ).to(device) rb.extend(td1) s = rb.sample() assert s.batch_size == torch.Size([5]) assert (td1[s.get("_idx").squeeze()].get("a") == s.get("a")).all() assert_allclose_td(td1[s.get("_idx").squeeze()].select("a"), s.select("a")) # test replacement td2 = TensorDict( source={ "a": torch.randn(5, 1), priority_key: torch.rand(5, 1) / 10, "_idx": torch.arange(5).view(5, 1), }, batch_size=[5], ).to(device) rb.extend(td2) s = rb.sample() assert s.batch_size == torch.Size([5]) assert (td2[s.get("_idx").squeeze()].get("a") == s.get("a")).all() assert_allclose_td(td2[s.get("_idx").squeeze()].select("a"), s.select("a")) # test strong update # get all indices that match first item idx = s.get("_idx") idx_match = (idx == idx[0]).nonzero()[:, 0] s.set_at_( priority_key, torch.ones(idx_match.numel(), 1, device=device) * 100000000, idx_match, ) val = s.get("a")[0] idx0 = s.get("_idx")[0] rb.update_tensordict_priority(s) s = rb.sample() assert (val == s.get("a")).sum() >= 1 torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1)) # test updating values of original td td2.set_("a", torch.ones_like(td2.get("a"))) s = rb.sample() torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1)) @pytest.mark.parametrize("stack", [False, True]) @pytest.mark.parametrize("reduction", ["min", "max", "mean", "median"]) def test_rb_trajectories(stack, reduction): traj_td = TensorDict( {"obs": torch.randn(3, 4, 5), "actions": torch.randn(3, 4, 2)}, batch_size=[3, 4], ) if stack: traj_td = torch.stack([td.to_tensordict() for td in traj_td], 0) rb = TensorDictPrioritizedReplayBuffer( alpha=0.7, beta=0.9, priority_key="td_error", storage=ListStorage(5), batch_size=3, ) rb.extend(traj_td) sampled_td = rb.sample() sampled_td.set("td_error", torch.rand(3, 4)) rb.update_tensordict_priority(sampled_td) sampled_td = rb.sample(include_info=True) assert (sampled_td.get("_weight") > 0).all() assert sampled_td.batch_size == torch.Size([3, 4]) # set back the trajectory length sampled_td_filtered = sampled_td.to_tensordict().exclude( "_weight", "index", "td_error" ) sampled_td_filtered.batch_size = [3, 4] def test_shared_storage_prioritized_sampler(): n = 100 storage = LazyMemmapStorage(n) writer = RoundRobinWriter() sampler0 = RandomSampler() sampler1 = PrioritizedSampler(max_capacity=n, alpha=0.7, beta=1.1) rb0 = ReplayBuffer(storage=storage, writer=writer, sampler=sampler0, batch_size=10) rb1 = ReplayBuffer(storage=storage, writer=writer, sampler=sampler1, batch_size=10) data = TensorDict({"a": torch.arange(50)}, [50]) # Extend rb0. rb1 should be aware of changes to storage. rb0.extend(data) assert len(rb0) == 50 assert len(storage) == 50 assert len(rb1) == 50 rb0.sample() rb1.sample() assert rb1._sampler._sum_tree.query(0, 10) == 10 assert rb1._sampler._sum_tree.query(0, 50) == 50 assert rb1._sampler._sum_tree.query(0, 70) == 50 class TestTransforms: def test_append_transform(self): rb = ReplayBuffer(collate_fn=lambda x: torch.stack(x, 0), batch_size=1) td = TensorDict( { "observation": torch.randn(2, 4, 3, 16), "observation2": torch.randn(2, 4, 3, 16), }, [], ) rb.add(td) flatten = CatTensors( in_keys=["observation", "observation2"], out_key="observation_cat" ) rb.append_transform(flatten) sampled = rb.sample() assert sampled.get("observation_cat").shape[-1] == 32 def test_init_transform(self): flatten = FlattenObservation( -2, -1, in_keys=["observation"], out_keys=["flattened"] ) rb = ReplayBuffer( collate_fn=lambda x: torch.stack(x, 0), transform=flatten, batch_size=1 ) td = TensorDict({"observation": torch.randn(2, 4, 3, 16)}, []) rb.add(td) sampled = rb.sample() assert sampled.get("flattened").shape[-1] == 48 def test_insert_transform(self): flatten = FlattenObservation( -2, -1, in_keys=["observation"], out_keys=["flattened"] ) rb = ReplayBuffer( collate_fn=lambda x: torch.stack(x, 0), transform=flatten, batch_size=1 ) td = TensorDict({"observation": torch.randn(2, 4, 3, 16, 1)}, []) rb.add(td) rb.insert_transform(0, SqueezeTransform(-1, in_keys=["observation"])) sampled = rb.sample() assert sampled.get("flattened").shape[-1] == 48 with pytest.raises(ValueError): rb.insert_transform(10, SqueezeTransform(-1, in_keys=["observation"])) transforms = [ ToTensorImage, pytest.param( partial(RewardClipping, clamp_min=0.1, clamp_max=0.9), id="RewardClipping" ), BinarizeReward, pytest.param( partial(Resize, w=2, h=2), id="Resize", marks=pytest.mark.skipif( not _has_tv, reason="needs torchvision dependency" ), ), pytest.param( partial(CenterCrop, w=1), id="CenterCrop", marks=pytest.mark.skipif( not _has_tv, reason="needs torchvision dependency" ), ), pytest.param( partial(UnsqueezeTransform, unsqueeze_dim=-1), id="UnsqueezeTransform" ), pytest.param(partial(SqueezeTransform, squeeze_dim=-1), id="SqueezeTransform"), GrayScale, pytest.param(partial(ObservationNorm, loc=1, scale=2), id="ObservationNorm"), pytest.param(partial(CatFrames, dim=-3, N=4), id="CatFrames"), pytest.param(partial(RewardScaling, loc=1, scale=2), id="RewardScaling"), DoubleToFloat, VecNorm, ] @pytest.mark.parametrize("transform", transforms) def test_smoke_replay_buffer_transform(self, transform): rb = TensorDictReplayBuffer( transform=transform(in_keys=["observation"]), batch_size=1 ) # td = TensorDict({"observation": torch.randn(3, 3, 3, 16, 1), "action": torch.randn(3)}, []) td = TensorDict({"observation": torch.randn(3, 3, 3, 16, 3)}, []) rb.add(td) m = mock.Mock() m.side_effect = [td.unsqueeze(0)] rb._transform.forward = m # rb._transform.__len__ = lambda *args: 3 rb.sample() assert rb._transform.forward.called # was_called = [False] # forward = rb._transform.forward # def new_forward(*args, **kwargs): # was_called[0] = True # return forward(*args, **kwargs) # rb._transform.forward = new_forward # rb.sample() # assert was_called[0] transforms2 = [ partial(DiscreteActionProjection, num_actions_effective=1, max_actions=3), FiniteTensorDictCheck, gSDENoise, PinMemoryTransform, ] @pytest.mark.parametrize("transform", transforms2) def test_smoke_replay_buffer_transform_no_inkeys(self, transform): if transform == PinMemoryTransform and not torch.cuda.is_available(): raise pytest.skip("No CUDA device detected, skipping PinMemory") rb = ReplayBuffer( collate_fn=lambda x: torch.stack(x, 0), transform=transform(), batch_size=1 ) action = torch.zeros(3) action[..., 0] = 1 td = TensorDict( {"observation": torch.randn(3, 3, 3, 16, 1), "action": action}, [] ) rb.add(td) rb.sample() rb._transform = mock.MagicMock() rb._transform.__len__ = lambda *args: 3 rb.sample() assert rb._transform.called @pytest.mark.parametrize("at_init", [True, False]) def test_transform_nontensor(self, at_init): def t(x): return tree_map(lambda y: y * 0, x) if at_init: rb = ReplayBuffer(storage=LazyMemmapStorage(100), transform=t) else: rb = ReplayBuffer(storage=LazyMemmapStorage(100)) rb.append_transform(t) data = { "a": torch.randn(3), "b": {"c": (torch.zeros(2), [torch.ones(1)])}, 30: -torch.ones(()), } rb.add(data) def assert0(x): assert (x == 0).all() s = rb.sample(10) tree_map(assert0, s) @pytest.mark.parametrize("size", [10, 15, 20]) @pytest.mark.parametrize("samples", [5, 9, 11, 14, 16]) @pytest.mark.parametrize("drop_last", [True, False]) def test_samplerwithoutrep(size, samples, drop_last): torch.manual_seed(0) storage = ListStorage(size) storage.set(range(size), range(size)) assert len(storage) == size sampler = SamplerWithoutReplacement(drop_last=drop_last) visited = False for _ in range(10): _n_left = ( sampler._sample_list.numel() if sampler._sample_list is not None else size ) if samples > size and drop_last: with pytest.raises( ValueError, match=r"The batch size .* is greater than the storage capacity", ): idx, _ = sampler.sample(storage, samples) break idx, _ = sampler.sample(storage, samples) if drop_last or _n_left >= samples: assert idx.numel() == samples assert idx.unique().numel() == idx.numel() else: assert idx.numel() == _n_left visited = True if not drop_last and (size % samples > 0): assert visited else: assert not visited @pytest.mark.parametrize("size", [10, 15, 20]) @pytest.mark.parametrize("drop_last", [True, False]) def test_replay_buffer_iter(size, drop_last): torch.manual_seed(0) storage = ListStorage(size) sampler = SamplerWithoutReplacement(drop_last=drop_last) writer = RoundRobinWriter() rb = ReplayBuffer(storage=storage, sampler=sampler, writer=writer, batch_size=3) rb.extend([torch.randint(100, (1,)) for _ in range(size)]) for i, _ in enumerate(rb): if i == 20: # guard against infinite loop if error is introduced raise RuntimeError("Iteration didn't terminate") if drop_last: assert i == size // 3 - 1 else: assert i == (size - 1) // 3 class TestMaxValueWriter: @pytest.mark.parametrize("size", [20, 25, 30]) @pytest.mark.parametrize("batch_size", [1, 10, 15]) @pytest.mark.parametrize("reward_ranges", [(0.25, 0.5, 1.0)]) @pytest.mark.parametrize("device", get_default_devices()) def test_max_value_writer(self, size, batch_size, reward_ranges, device): torch.manual_seed(0) rb = TensorDictReplayBuffer( storage=LazyTensorStorage(size, device=device), sampler=SamplerWithoutReplacement(), batch_size=batch_size, writer=TensorDictMaxValueWriter(rank_key="key"), ) max_reward1, max_reward2, max_reward3 = reward_ranges td = TensorDict( { "key": torch.clamp_max(torch.rand(size), max=max_reward1), "obs": torch.rand(size), }, batch_size=size, device=device, ) rb.extend(td) sample = rb.sample() assert (sample.get("key") <= max_reward1).all() assert (0 <= sample.get("key")).all() assert len(sample.get("index").unique()) == len(sample.get("index")) td = TensorDict( { "key": torch.clamp(torch.rand(size), min=max_reward1, max=max_reward2), "obs": torch.rand(size), }, batch_size=size, device=device, ) rb.extend(td) sample = rb.sample() assert (sample.get("key") <= max_reward2).all() assert (max_reward1 <= sample.get("key")).all() assert len(sample.get("index").unique()) == len(sample.get("index")) td = TensorDict( { "key": torch.clamp(torch.rand(size), min=max_reward2, max=max_reward3), "obs": torch.rand(size), }, batch_size=size, device=device, ) for sample in td: rb.add(sample) sample = rb.sample() assert (sample.get("key") <= max_reward3).all() assert (max_reward2 <= sample.get("key")).all() assert len(sample.get("index").unique()) == len(sample.get("index")) # Finally, test the case when no obs should be added td = TensorDict( { "key": torch.zeros(size), "obs": torch.rand(size), }, batch_size=size, device=device, ) rb.extend(td) sample = rb.sample() assert (sample.get("key") != 0).all() @pytest.mark.parametrize("size", [20, 25, 30]) @pytest.mark.parametrize("batch_size", [1, 10, 15]) @pytest.mark.parametrize("reward_ranges", [(0.25, 0.5, 1.0)]) @pytest.mark.parametrize("device", get_default_devices()) def test_max_value_writer_serialize( self, size, batch_size, reward_ranges, device, tmpdir ): rb = TensorDictReplayBuffer( storage=LazyTensorStorage(size, device=device), sampler=SamplerWithoutReplacement(), batch_size=batch_size, writer=TensorDictMaxValueWriter(rank_key="key"), ) max_reward1, max_reward2, max_reward3 = reward_ranges td = TensorDict( { "key": torch.clamp_max(torch.rand(size), max=max_reward1), "obs": torch.rand(size), }, batch_size=size, device=device, ) rb.extend(td) rb._writer.dumps(tmpdir) # check we can dump twice rb._writer.dumps(tmpdir) other = TensorDictMaxValueWriter(rank_key="key") other.loads(tmpdir) assert len(rb._writer._current_top_values) == len(other._current_top_values) torch.testing.assert_close( torch.tensor(rb._writer._current_top_values), torch.tensor(other._current_top_values), ) @pytest.mark.parametrize("size", [[], [1], [2, 3]]) @pytest.mark.parametrize("device", get_default_devices()) @pytest.mark.parametrize("reduction", ["max", "min", "mean", "median", "sum"]) def test_max_value_writer_reduce(self, size, device, reduction): torch.manual_seed(0) batch_size = 4 rb = TensorDictReplayBuffer( storage=LazyTensorStorage(1, device=device), sampler=SamplerWithoutReplacement(), batch_size=batch_size, writer=TensorDictMaxValueWriter(rank_key="key", reduction=reduction), ) key = torch.rand(batch_size, *size, device=device) obs = torch.rand(batch_size, *size, device=device) td = TensorDict( {"key": key, "obs": obs}, batch_size=batch_size, device=device, ) rb.extend(td) sample = rb.sample() if reduction == "max": rank_key = torch.stack([k.max() for k in key.unbind(0)]) elif reduction == "min": rank_key = torch.stack([k.min() for k in key.unbind(0)]) elif reduction == "mean": rank_key = torch.stack([k.mean() for k in key.unbind(0)]) elif reduction == "median": rank_key = torch.stack([k.median() for k in key.unbind(0)]) elif reduction == "sum": rank_key = torch.stack([k.sum() for k in key.unbind(0)]) top_rank = torch.argmax(rank_key) assert (sample.get("obs") == obs[top_rank]).all() class TestMultiProc: @staticmethod def worker(rb, q0, q1): td = TensorDict({"a": torch.ones(10), "next": {"reward": torch.ones(10)}}, [10]) rb.extend(td) q0.put("extended") extended = q1.get(timeout=5) assert extended == "extended" assert len(rb) == 21, len(rb) assert (rb["a"][:9] == 2).all() q0.put("finish") def exec_multiproc_rb( self, storage_type=LazyMemmapStorage, init=True, writer_type=TensorDictRoundRobinWriter, sampler_type=RandomSampler, ): rb = TensorDictReplayBuffer( storage=storage_type(21), writer=writer_type(), sampler=sampler_type() ) if init: td = TensorDict( {"a": torch.zeros(10), "next": {"reward": torch.ones(10)}}, [10] ) rb.extend(td) q0 = mp.Queue(1) q1 = mp.Queue(1) proc = mp.Process(target=self.worker, args=(rb, q0, q1)) proc.start() try: extended = q0.get(timeout=100) assert extended == "extended" assert len(rb) == 20 assert (rb["a"][10:20] == 1).all() td = TensorDict({"a": torch.zeros(10) + 2}, [10]) rb.extend(td) q1.put("extended") finish = q0.get(timeout=5) assert finish == "finish" finally: proc.join() def test_multiproc_rb(self): return self.exec_multiproc_rb() def test_error_list(self): # list storage cannot be shared with pytest.raises(RuntimeError, match="Cannot share a storage of type"): self.exec_multiproc_rb(storage_type=ListStorage) def test_error_nonshared(self): # non shared tensor storage cannot be shared with pytest.raises( RuntimeError, match="The storage must be place in shared memory" ): self.exec_multiproc_rb(storage_type=LazyTensorStorage) def test_error_maxwriter(self): # TensorDictMaxValueWriter cannot be shared with pytest.raises(RuntimeError, match="cannot be shared between processes"): self.exec_multiproc_rb(writer_type=TensorDictMaxValueWriter) def test_error_prb(self): # PrioritizedSampler cannot be shared with pytest.raises(RuntimeError, match="cannot be shared between processes"): self.exec_multiproc_rb( sampler_type=lambda: PrioritizedSampler(21, alpha=1.1, beta=0.5) ) def test_error_noninit(self): # list storage cannot be shared with pytest.raises(RuntimeError, match="it has not been initialized yet"): self.exec_multiproc_rb(init=False) class TestSamplers: @pytest.mark.parametrize( "backend", ["torch"] + (["torchsnapshot"] if _has_snapshot else []) ) def test_sampler_without_rep_state_dict(self, backend): os.environ["CKPT_BACKEND"] = backend torch.manual_seed(0) n_samples = 3 buffer_size = 100 storage_in = LazyTensorStorage(buffer_size, device="cpu") storage_out = LazyTensorStorage(buffer_size, device="cpu") replay_buffer = TensorDictReplayBuffer( storage=storage_in, sampler=SamplerWithoutReplacement(), ) # fill replay buffer with random data transition = TensorDict( { "observation": torch.ones(1, 4), "action": torch.ones(1, 2), "reward": torch.ones(1, 1), "dones": torch.ones(1, 1), "next": {"observation": torch.ones(1, 4)}, }, batch_size=1, ) for _ in range(n_samples): replay_buffer.extend(transition.clone()) for _ in range(n_samples): s = replay_buffer.sample(batch_size=1) assert (s.exclude("index") == 1).all() replay_buffer.extend(torch.zeros_like(transition)) state_dict = replay_buffer.state_dict() new_replay_buffer = TensorDictReplayBuffer( storage=storage_out, batch_size=state_dict["_batch_size"], sampler=SamplerWithoutReplacement(), ) new_replay_buffer.load_state_dict(state_dict) s = new_replay_buffer.sample(batch_size=1) assert (s.exclude("index") == 0).all() @pytest.mark.parametrize( "batch_size,num_slices,slice_len,prioritized", [ [100, 20, None, True], [100, 20, None, False], [120, 30, None, False], [100, None, 5, False], [120, None, 4, False], [101, None, 101, False], ], ) @pytest.mark.parametrize("episode_key", ["episode", ("some", "episode")]) @pytest.mark.parametrize("done_key", ["done", ("some", "done")]) @pytest.mark.parametrize("match_episode", [True, False]) @pytest.mark.parametrize("device", get_default_devices()) def test_slice_sampler( self, batch_size, num_slices, slice_len, prioritized, episode_key, done_key, match_episode, device, ): torch.manual_seed(0) storage = LazyMemmapStorage(100) episode = torch.zeros(100, dtype=torch.int, device=device) episode[:30] = 1 episode[30:55] = 2 episode[55:70] = 3 episode[70:] = 4 steps = torch.cat( [torch.arange(30), torch.arange(25), torch.arange(15), torch.arange(30)], 0 ) done = torch.zeros(100, 1, dtype=torch.bool) done[torch.tensor([29, 54, 69, 99])] = 1 data = TensorDict( { # we only use episode_key if we want the sampler to access it episode_key if match_episode else "whatever_episode": episode, "another_episode": episode, "obs": torch.randn((3, 4, 5)).expand(100, 3, 4, 5), "act": torch.randn((20,)).expand(100, 20), "steps": steps, "count": torch.arange(100), "other": torch.randn((20, 50)).expand(100, 20, 50), done_key: done, }, [100], device=device, ) storage.set(range(100), data) if slice_len is not None and slice_len > 15: # we may have to sample trajs shorter than slice_len strict_length = False else: strict_length = True if prioritized: num_steps = data.shape[0] sampler = PrioritizedSliceSampler( max_capacity=num_steps, alpha=0.7, beta=0.9, num_slices=num_slices, traj_key=episode_key, end_key=done_key, slice_len=slice_len, strict_length=strict_length, ) index = torch.arange(0, num_steps, 1) sampler.extend(index) else: sampler = SliceSampler( num_slices=num_slices, traj_key=episode_key, end_key=done_key, slice_len=slice_len, strict_length=strict_length, ) if slice_len is not None: num_slices = batch_size // slice_len trajs_unique_id = set() too_short = False count_unique = set() for _ in range(30): index, info = sampler.sample(storage, batch_size=batch_size) samples = storage._storage[index] if strict_length: # check that trajs are ok samples = samples.view(num_slices, -1) assert samples["another_episode"].unique( dim=1 ).squeeze().shape == torch.Size([num_slices]) assert ( samples["steps"][..., 1:] - 1 == samples["steps"][..., :-1] ).all() if isinstance(index, tuple): index_numel = index[0].numel() else: index_numel = index.numel() too_short = too_short or index_numel < batch_size trajs_unique_id = trajs_unique_id.union( samples["another_episode"].view(-1).tolist() ) count_unique = count_unique.union(samples.get("count").view(-1).tolist()) if len(count_unique) == 100: # all items have been sampled break else: raise AssertionError( f"Not all items can be sampled: {set(range(100))-count_unique} are missing" ) if strict_length: assert not too_short else: assert too_short assert len(trajs_unique_id) == 4 truncated = info[("next", "truncated")] assert truncated.view(num_slices, -1)[:, -1].all() @pytest.mark.parametrize("sampler", [SliceSampler, SliceSamplerWithoutReplacement]) def test_slice_sampler_at_capacity(self, sampler): torch.manual_seed(0) trajectory0 = torch.tensor([3, 3, 0, 1, 1, 1, 2, 2, 2, 3]) trajectory1 = torch.arange(2).repeat_interleave(5) trajectory = torch.stack([trajectory0, trajectory1], 0) td = TensorDict( {"trajectory": trajectory, "steps": torch.arange(10).expand(2, 10)}, [2, 10] ) rb = ReplayBuffer( sampler=sampler(traj_key="trajectory", num_slices=2), storage=LazyTensorStorage(20, ndim=2), batch_size=6, ) rb.extend(td) for s in rb: if (s["steps"] == 9).any(): n = (s["steps"] == 9).nonzero() assert ((s["steps"] == 0).nonzero() == n + 1).all() assert ((s["steps"] == 1).nonzero() == n + 2).all() break else: raise AssertionError def test_slice_sampler_errors(self): device = "cpu" batch_size, num_slices = 100, 20 episode = torch.zeros(100, dtype=torch.int, device=device) episode[:30] = 1 episode[30:55] = 2 episode[55:70] = 3 episode[70:] = 4 steps = torch.cat( [torch.arange(30), torch.arange(25), torch.arange(15), torch.arange(30)], 0 ) done = torch.zeros(100, 1, dtype=torch.bool) done[torch.tensor([29, 54, 69])] = 1 data = TensorDict( { # we only use episode_key if we want the sampler to access it "episode": episode, "another_episode": episode, "obs": torch.randn((3, 4, 5)).expand(100, 3, 4, 5), "act": torch.randn((20,)).expand(100, 20), "steps": steps, "other": torch.randn((20, 50)).expand(100, 20, 50), ("next", "done"): done, }, [100], device=device, ) data_wrong_done = data.clone(False) data_wrong_done.rename_key_("episode", "_") data_wrong_done["next", "done"] = done.unsqueeze(1).expand(100, 5, 1) storage = LazyMemmapStorage(100) storage.set(range(100), data_wrong_done) sampler = SliceSampler(num_slices=num_slices) with pytest.raises( RuntimeError, match="Expected the end-of-trajectory signal to be 1-dimensional", ): index, _ = sampler.sample(storage, batch_size=batch_size) storage = ListStorage(100) storage.set(range(100), data) sampler = SliceSampler(num_slices=num_slices) with pytest.raises( RuntimeError, match="Could not get a tensordict out of the storage, which is required for SliceSampler to compute the trajectories.", ): index, _ = sampler.sample(storage, batch_size=batch_size) @pytest.mark.parametrize("batch_size,num_slices", [[20, 4], [4, 2]]) @pytest.mark.parametrize("episode_key", ["episode", ("some", "episode")]) @pytest.mark.parametrize("done_key", ["done", ("some", "done")]) @pytest.mark.parametrize("match_episode", [True, False]) @pytest.mark.parametrize("device", get_default_devices()) def test_slice_sampler_without_replacement( self, batch_size, num_slices, episode_key, done_key, match_episode, device, ): torch.manual_seed(0) storage = LazyMemmapStorage(100) episode = torch.zeros(100, dtype=torch.int, device=device) steps = [] done = torch.zeros(100, 1, dtype=torch.bool) for i in range(0, 100, 5): episode[i : i + 5] = i // 5 steps.append(torch.arange(5)) done[i + 4] = 1 steps = torch.cat(steps) data = TensorDict( { # we only use episode_key if we want the sampler to access it episode_key if match_episode else "whatever_episode": episode, "another_episode": episode, "obs": torch.randn((3, 4, 5)).expand(100, 3, 4, 5), "act": torch.randn((20,)).expand(100, 20), "steps": steps, "other": torch.randn((20, 50)).expand(100, 20, 50), done_key: done, }, [100], device=device, ) storage.set(range(100), data) sampler = SliceSamplerWithoutReplacement( num_slices=num_slices, traj_key=episode_key, end_key=done_key ) trajs_unique_id = set() for i in range(5): index, info = sampler.sample(storage, batch_size=batch_size) samples = storage._storage[index] # check that trajs are ok samples = samples.view(num_slices, -1) assert samples["another_episode"].unique( dim=1 ).squeeze().shape == torch.Size([num_slices]) assert (samples["steps"][..., 1:] - 1 == samples["steps"][..., :-1]).all() cur_episodes = samples["another_episode"].view(-1).tolist() for ep in cur_episodes: assert ep not in trajs_unique_id, i trajs_unique_id = trajs_unique_id.union( cur_episodes, ) truncated = info[("next", "truncated")] assert truncated.view(num_slices, -1)[:, -1].all() def test_prioritized_slice_sampler_doc_example(): sampler = PrioritizedSliceSampler(max_capacity=9, num_slices=3, alpha=0.7, beta=0.9) rb = TensorDictReplayBuffer( storage=LazyMemmapStorage(9), sampler=sampler, batch_size=6 ) data = TensorDict( { "observation": torch.randn(9, 16), "action": torch.randn(9, 1), "episode": torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 2], dtype=torch.long), "steps": torch.tensor([0, 1, 2, 0, 1, 2, 0, 1, 2], dtype=torch.long), ("next", "observation"): torch.randn(9, 16), ("next", "reward"): torch.randn(9, 1), ("next", "done"): torch.tensor( [0, 0, 1, 0, 0, 1, 0, 0, 1], dtype=torch.bool ).unsqueeze(1), }, batch_size=[9], ) rb.extend(data) sample, info = rb.sample(return_info=True) # print("episode", sample["episode"].tolist()) # print("steps", sample["steps"].tolist()) # print("weight", info["_weight"].tolist()) priority = torch.tensor([0, 3, 3, 0, 0, 0, 1, 1, 1]) rb.update_priority(torch.arange(0, 9, 1), priority=priority) sample, info = rb.sample(return_info=True) # print("episode", sample["episode"].tolist()) # print("steps", sample["steps"].tolist()) # print("weight", info["_weight"].tolist()) @pytest.mark.parametrize("device", get_default_devices()) def test_prioritized_slice_sampler_episodes(device): num_slices = 10 batch_size = 20 episode = torch.zeros(100, dtype=torch.int, device=device) episode[:30] = 1 episode[30:55] = 2 episode[55:70] = 3 episode[70:] = 4 steps = torch.cat( [torch.arange(30), torch.arange(25), torch.arange(15), torch.arange(30)], 0 ) done = torch.zeros(100, 1, dtype=torch.bool) done[torch.tensor([29, 54, 69])] = 1 data = TensorDict( { "observation": torch.randn(100, 16), "action": torch.randn(100, 4), "episode": episode, "steps": steps, ("next", "observation"): torch.randn(100, 16), ("next", "reward"): torch.randn(100, 1), ("next", "done"): done, }, batch_size=[100], device=device, ) num_steps = data.shape[0] sampler = PrioritizedSliceSampler( max_capacity=num_steps, alpha=0.7, beta=0.9, num_slices=num_slices, ) rb = TensorDictReplayBuffer( storage=LazyMemmapStorage(100), sampler=sampler, batch_size=batch_size, ) rb.extend(data) episodes = [] for _ in range(10): sample = rb.sample() episodes.append(sample["episode"]) assert {1, 2, 3, 4} == set( torch.cat(episodes).cpu().tolist() ), "all episodes are expected to be sampled at least once" index = torch.arange(0, num_steps, 1) new_priorities = torch.cat( [torch.ones(30), torch.zeros(25), torch.ones(15), torch.zeros(30)], 0 ) sampler.update_priority(index, new_priorities) episodes = [] for _ in range(10): sample = rb.sample() episodes.append(sample["episode"]) assert {1, 3} == set( torch.cat(episodes).cpu().tolist() ), "after priority update, only episode 1 and 3 are expected to be sampled" class TestEnsemble: def _make_data(self, data_type): if data_type is torch.Tensor: return torch.ones(90) if data_type is TensorDict: return TensorDict( { "root": torch.arange(90), "nested": TensorDict( {"data": torch.arange(180).view(90, 2)}, batch_size=[90, 2] ), }, batch_size=[90], ) raise NotImplementedError def _make_sampler(self, sampler_type): if sampler_type is SamplerWithoutReplacement: return SamplerWithoutReplacement(drop_last=True) if sampler_type is RandomSampler: return RandomSampler() raise NotImplementedError def _make_storage(self, storage_type, data_type): if storage_type is LazyMemmapStorage: return LazyMemmapStorage(max_size=100) if storage_type is TensorStorage: if data_type is TensorDict: return TensorStorage(TensorDict({}, [100])) elif data_type is torch.Tensor: return TensorStorage(torch.zeros(100)) else: raise NotImplementedError if storage_type is ListStorage: return ListStorage(max_size=100) raise NotImplementedError def _make_collate(self, storage_type): if storage_type is ListStorage: return torch.stack else: return self._robust_stack @staticmethod def _robust_stack(tensor_list): if not isinstance(tensor_list, (tuple, list)): return tensor_list if all(tensor.shape == tensor_list[0].shape for tensor in tensor_list[1:]): return torch.stack(list(tensor_list)) if is_tensor_collection(tensor_list[0]): return torch.cat(list(tensor_list)) return torch.nested.nested_tensor(list(tensor_list)) @pytest.mark.parametrize( "storage_type", [LazyMemmapStorage, TensorStorage, ListStorage] ) @pytest.mark.parametrize("data_type", [torch.Tensor, TensorDict]) @pytest.mark.parametrize("p", [[0.0, 0.9, 0.1], None]) @pytest.mark.parametrize("num_buffer_sampled", [3, 16, None]) @pytest.mark.parametrize("batch_size", [48, None]) @pytest.mark.parametrize("sampler_type", [RandomSampler, SamplerWithoutReplacement]) def test_rb( self, storage_type, sampler_type, data_type, p, num_buffer_sampled, batch_size ): storages = [self._make_storage(storage_type, data_type) for _ in range(3)] collate_fn = self._make_collate(storage_type) data = [self._make_data(data_type) for _ in range(3)] samplers = [self._make_sampler(sampler_type) for _ in range(3)] sub_batch_size = ( batch_size // 3 if issubclass(sampler_type, SamplerWithoutReplacement) and batch_size is not None else None ) error_catcher = ( pytest.raises( ValueError, match="Samplers with drop_last=True must work with a predictible batch-size", ) if batch_size is None and issubclass(sampler_type, SamplerWithoutReplacement) else contextlib.nullcontext() ) rbs = None with error_catcher: rbs = (rb0, rb1, rb2) = [ ReplayBuffer( storage=storage, sampler=sampler, collate_fn=collate_fn, batch_size=sub_batch_size, ) for (storage, sampler) in zip(storages, samplers) ] if rbs is None: return for datum, rb in zip(data, rbs): rb.extend(datum) rb = ReplayBufferEnsemble( *rbs, p=p, num_buffer_sampled=num_buffer_sampled, batch_size=batch_size ) if batch_size is not None: for batch_iter in rb: assert isinstance(batch_iter, (torch.Tensor, TensorDictBase)) break batch_sample, info = rb.sample(return_info=True) else: batch_iter = None batch_sample, info = rb.sample(48, return_info=True) assert isinstance(batch_sample, (torch.Tensor, TensorDictBase)) if isinstance(batch_sample, TensorDictBase): assert "root" in batch_sample.keys() assert "nested" in batch_sample.keys() assert ("nested", "data") in batch_sample.keys(True) if p is not None: if batch_iter is not None: buffer_ids = batch_iter.get(("index", "buffer_ids")) assert isinstance(buffer_ids, torch.Tensor), batch_iter assert 0 not in buffer_ids.unique().tolist() buffer_ids = batch_sample.get(("index", "buffer_ids")) assert isinstance(buffer_ids, torch.Tensor), buffer_ids assert 0 not in buffer_ids.unique().tolist() if num_buffer_sampled is not None: if batch_iter is not None: assert batch_iter.shape == torch.Size( [num_buffer_sampled, 48 // num_buffer_sampled] ) assert batch_sample.shape == torch.Size( [num_buffer_sampled, 48 // num_buffer_sampled] ) else: if batch_iter is not None: assert batch_iter.shape == torch.Size([3, 16]) assert batch_sample.shape == torch.Size([3, 16]) def _prepare_dual_replay_buffer(self, explicit=False): torch.manual_seed(0) rb0 = TensorDictReplayBuffer( storage=LazyMemmapStorage(10), transform=Compose( ToTensorImage(in_keys=["pixels", ("next", "pixels")]), Resize(32, in_keys=["pixels", ("next", "pixels")]), RenameTransform([("some", "key")], ["renamed"]), ), ) rb1 = TensorDictReplayBuffer( storage=LazyMemmapStorage(10), transform=Compose( ToTensorImage(in_keys=["pixels", ("next", "pixels")]), Resize(32, in_keys=["pixels", ("next", "pixels")]), RenameTransform(["another_key"], ["renamed"]), ), ) if explicit: storages = StorageEnsemble( rb0._storage, rb1._storage, transforms=[rb0._transform, rb1._transform] ) writers = WriterEnsemble(rb0._writer, rb1._writer) samplers = SamplerEnsemble(rb0._sampler, rb1._sampler, p=[0.5, 0.5]) collate_fns = [rb0._collate_fn, rb1._collate_fn] rb = ReplayBufferEnsemble( storages=storages, samplers=samplers, writers=writers, collate_fns=collate_fns, transform=Resize(33, in_keys=["pixels"], out_keys=["pixels33"]), ) else: rb = ReplayBufferEnsemble( rb0, rb1, p=[0.5, 0.5], transform=Resize(33, in_keys=["pixels"], out_keys=["pixels33"]), ) data0 = TensorDict( { "pixels": torch.randint(255, (10, 244, 244, 3)), ("next", "pixels"): torch.randint(255, (10, 244, 244, 3)), ("some", "key"): torch.randn(10), }, batch_size=[10], ) data1 = TensorDict( { "pixels": torch.randint(255, (10, 64, 64, 3)), ("next", "pixels"): torch.randint(255, (10, 64, 64, 3)), "another_key": torch.randn(10), }, batch_size=[10], ) rb0.extend(data0) rb1.extend(data1) return rb, rb0, rb1 @pytest.mark.skipif(not _has_tv, reason="torchvision not found") def test_rb_transform(self): rb, rb0, rb1 = self._prepare_dual_replay_buffer() for _ in range(2): sample = rb.sample(10) assert sample["next", "pixels"].shape == torch.Size([2, 5, 3, 32, 32]) assert sample["pixels"].shape == torch.Size([2, 5, 3, 32, 32]) assert sample["pixels33"].shape == torch.Size([2, 5, 3, 33, 33]) assert sample["renamed"].shape == torch.Size([2, 5]) @pytest.mark.skipif(not _has_tv, reason="torchvision not found") @pytest.mark.parametrize("explicit", [False, True]) def test_rb_indexing(self, explicit): rb, rb0, rb1 = self._prepare_dual_replay_buffer(explicit=explicit) if explicit: # indirect checks assert rb[0]._storage is rb0._storage assert rb[1]._storage is rb1._storage else: assert rb[0] is rb0 assert rb[1] is rb1 assert rb[:] is rb torch.manual_seed(0) sample1 = rb.sample(6) # tensor torch.manual_seed(0) sample0 = rb[torch.tensor([0, 1])].sample(6) assert_allclose_td(sample0, sample1) # slice torch.manual_seed(0) sample0 = rb[:2].sample(6) assert_allclose_td(sample0, sample1) # np.ndarray torch.manual_seed(0) sample0 = rb[np.array([0, 1])].sample(6) assert_allclose_td(sample0, sample1) # list torch.manual_seed(0) sample0 = rb[[0, 1]].sample(6) assert_allclose_td(sample0, sample1) # direct indexing sample1 = rb[:, :3] # tensor sample0 = rb[torch.tensor([0, 1]), :3] assert_allclose_td(sample0, sample1) # slice torch.manual_seed(0) sample0 = rb[:2, :3] assert_allclose_td(sample0, sample1) # np.ndarray torch.manual_seed(0) sample0 = rb[np.array([0, 1]), :3] assert_allclose_td(sample0, sample1) # list torch.manual_seed(0) sample0 = rb[[0, 1], :3] assert_allclose_td(sample0, sample1) # check indexing of components assert isinstance(rb._storage[:], StorageEnsemble) assert isinstance(rb._storage[:2], StorageEnsemble) assert isinstance(rb._storage[torch.tensor([0, 1])], StorageEnsemble) assert isinstance(rb._storage[np.array([0, 1])], StorageEnsemble) assert isinstance(rb._storage[[0, 1]], StorageEnsemble) assert isinstance(rb._storage[1], LazyMemmapStorage) rb._storage[:, :3] rb._storage[:2, :3] rb._storage[torch.tensor([0, 1]), :3] rb._storage[np.array([0, 1]), :3] rb._storage[[0, 1], :3] assert isinstance(rb._sampler[:], SamplerEnsemble) assert isinstance(rb._sampler[:2], SamplerEnsemble) assert isinstance(rb._sampler[torch.tensor([0, 1])], SamplerEnsemble) assert isinstance(rb._sampler[np.array([0, 1])], SamplerEnsemble) assert isinstance(rb._sampler[[0, 1]], SamplerEnsemble) assert isinstance(rb._sampler[1], RandomSampler) assert isinstance(rb._writer[:], WriterEnsemble) assert isinstance(rb._writer[:2], WriterEnsemble) assert isinstance(rb._writer[torch.tensor([0, 1])], WriterEnsemble) assert isinstance(rb._writer[np.array([0, 1])], WriterEnsemble) assert isinstance(rb._writer[[0, 1]], WriterEnsemble) assert isinstance(rb._writer[0], RoundRobinWriter) def _rbtype(datatype): if datatype in ("pytree", "tensorclass"): return [ReplayBuffer, PrioritizedReplayBuffer] return [ ReplayBuffer, PrioritizedReplayBuffer, TensorDictReplayBuffer, TensorDictPrioritizedReplayBuffer, ] class TestRBMultidim: @tensorclass class MyData: x: torch.Tensor y: torch.Tensor z: torch.Tensor def _make_data(self, datatype, datadim): if datadim == 1: shape = [12] elif datadim == 2: shape = [4, 3] else: raise NotImplementedError if datatype == "pytree": return { "x": (torch.ones(*shape, 2), (torch.ones(*shape, 3))), "y": [ {"z": torch.ones(shape)}, torch.ones((*shape, 1), dtype=torch.bool), ], } elif datatype == "tensordict": return TensorDict( {"x": torch.ones(*shape, 2), "y": {"z": torch.ones(*shape, 3)}}, shape ) elif datatype == "tensorclass": return self.MyData( x=torch.ones(*shape, 2), y=torch.ones(*shape, 3), z=torch.ones((*shape, 1), dtype=torch.bool), batch_size=shape, ) datatype_rb_pairs = [ [datatype, rbtype] for datatype in ["pytree", "tensordict", "tensorclass"] for rbtype in _rbtype(datatype) ] @pytest.mark.parametrize("datatype,rbtype", datatype_rb_pairs) @pytest.mark.parametrize("datadim", [1, 2]) @pytest.mark.parametrize("storage_cls", [LazyMemmapStorage, LazyTensorStorage]) def test_rb_multidim(self, datatype, datadim, rbtype, storage_cls): data = self._make_data(datatype, datadim) if rbtype not in (PrioritizedReplayBuffer, TensorDictPrioritizedReplayBuffer): rbtype = functools.partial(rbtype, sampler=RandomSampler()) else: rbtype = functools.partial(rbtype, alpha=0.9, beta=1.1) rb = rbtype(storage=storage_cls(100, ndim=datadim), batch_size=4) rb.extend(data) assert len(rb) == 12 data = rb[:] if datatype in ("tensordict", "tensorclass"): assert data.numel() == 12 else: assert all( leaf.shape[:datadim].numel() == 12 for leaf in tree_flatten(data)[0] ) s = rb.sample() if datatype in ("tensordict", "tensorclass"): assert (s.exclude("index") == 1).all() assert s.numel() == 4 else: for leaf in torch.utils._pytree.tree_leaves(s): assert leaf.shape[0] == 4 assert (leaf == 1).all() @pytest.mark.skipif(not _has_gym, reason="gym required for this test.") @pytest.mark.parametrize( "writer_cls", [TensorDictMaxValueWriter, RoundRobinWriter, TensorDictRoundRobinWriter], ) @pytest.mark.parametrize("storage_cls", [LazyMemmapStorage, LazyTensorStorage]) @pytest.mark.parametrize( "rbtype", [ functools.partial(ReplayBuffer, batch_size=8), functools.partial(TensorDictReplayBuffer, batch_size=8), ], ) @pytest.mark.parametrize( "sampler_cls", [ functools.partial(SliceSampler, num_slices=2, strict_length=False), RandomSampler, functools.partial( SliceSamplerWithoutReplacement, num_slices=2, strict_length=False ), functools.partial(PrioritizedSampler, alpha=1.0, beta=1.0, max_capacity=10), functools.partial( PrioritizedSliceSampler, alpha=1.0, beta=1.0, max_capacity=10, num_slices=2, strict_length=False, ), ], ) @pytest.mark.parametrize( "transform", [ None, [ lambda: split_trajectories, functools.partial(MultiStep, gamma=0.9, n_steps=3), ], ], ) def test_rb_multidim_collector( self, rbtype, storage_cls, writer_cls, sampler_cls, transform ): from _utils_internal import CARTPOLE_VERSIONED torch.manual_seed(0) env = SerialEnv(2, lambda: GymEnv(CARTPOLE_VERSIONED())) env.set_seed(0) collector = SyncDataCollector( env, RandomPolicy(env.action_spec), frames_per_batch=4, total_frames=16 ) if writer_cls is TensorDictMaxValueWriter: with pytest.raises( ValueError, match="TensorDictMaxValueWriter is not compatible with storages with more than one dimension", ): rb = rbtype( storage=storage_cls(max_size=10, ndim=2), sampler=sampler_cls(), writer=writer_cls(), ) return rb = rbtype( storage=storage_cls(max_size=10, ndim=2), sampler=sampler_cls(), writer=writer_cls(), ) if not isinstance(rb._sampler, SliceSampler) and transform is not None: pytest.skip("no need to test this combination") if transform: for t in transform: rb.append_transform(t()) try: for i, data in enumerate(collector): # noqa: B007 rb.extend(data) if isinstance(rb, TensorDictReplayBuffer) and transform is not None: # this should fail bc we can't set the indices after executing the transform. with pytest.raises( RuntimeError, match="Failed to set the metadata" ): rb.sample() return s = rb.sample() rbtot = rb[:] assert rbtot.shape[0] == 2 assert len(rb) == rbtot.numel() if transform is not None: assert s.ndim == 2 except Exception: print(f"Failing at iter {i}") # noqa: T201 print(f"rb {rb}") # noqa: T201 raise if __name__ == "__main__": args, unknown = argparse.ArgumentParser().parse_known_args() pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)