# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import functools import gc import os.path import re from collections import defaultdict from functools import partial from sys import platform import numpy as np import pytest import torch import yaml from _utils_internal import ( _make_envs, CARTPOLE_VERSIONED, check_rollout_consistency_multikey_env, decorate_thread_sub_func, get_default_devices, HALFCHEETAH_VERSIONED, PENDULUM_VERSIONED, PONG_VERSIONED, rand_reset, ) from mocking_classes import ( ActionObsMergeLinear, ContinuousActionConvMockEnv, ContinuousActionConvMockEnvNumpy, ContinuousActionVecMockEnv, CountingBatchedEnv, CountingEnv, CountingEnvCountPolicy, DiscreteActionConvMockEnv, DiscreteActionConvMockEnvNumpy, DiscreteActionVecMockEnv, DummyModelBasedEnvBase, HeterogeneousCountingEnv, HeterogeneousCountingEnvPolicy, MockBatchedLockedEnv, MockBatchedUnLockedEnv, MockSerialEnv, MultiKeyCountingEnv, MultiKeyCountingEnvPolicy, NestedCountingEnv, ) from packaging import version from tensordict import ( assert_allclose_td, dense_stack_tds, LazyStackedTensorDict, TensorDict, ) from tensordict.nn import TensorDictModuleBase from tensordict.utils import _unravel_key_to_tuple from torch import nn from torchrl.collectors import MultiSyncDataCollector, SyncDataCollector from torchrl.data.tensor_specs import ( CompositeSpec, DiscreteTensorSpec, UnboundedContinuousTensorSpec, ) from torchrl.envs import ( CatTensors, DoubleToFloat, EnvBase, EnvCreator, ParallelEnv, SerialEnv, ) from torchrl.envs.gym_like import default_info_dict_reader from torchrl.envs.libs.dm_control import _has_dmc, DMControlEnv from torchrl.envs.libs.gym import _has_gym, GymEnv, GymWrapper from torchrl.envs.transforms import Compose, StepCounter, TransformedEnv from torchrl.envs.utils import ( _StepMDP, _terminated_or_truncated, check_env_specs, check_marl_grouping, make_composite_from_td, MarlGroupMapType, step_mdp, ) from torchrl.modules import Actor, ActorCriticOperator, MLP, SafeModule, ValueOperator from torchrl.modules.tensordict_module import WorldModelWrapper gym_version = None if _has_gym: try: import gymnasium as gym except ModuleNotFoundError: import gym gym_version = version.parse(gym.__version__) try: this_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(this_dir, "configs", "atari.yaml"), "r") as file: atari_confs = yaml.load(file, Loader=yaml.FullLoader) _atari_found = True except FileNotFoundError: _atari_found = False atari_confs = defaultdict(lambda: "") IS_OSX = platform == "darwin" IS_WIN = platform == "win32" ## TO BE FIXED: DiscreteActionProjection queries a randint on each worker, which leads to divergent results between ## the serial and parallel batched envs # def _make_atari_env(atari_env): # action_spec = GymEnv(atari_env + "-ram-v0").action_spec # n_act = action_spec.shape[-1] # return lambda **kwargs: TransformedEnv( # GymEnv(atari_env + "-ram-v0", **kwargs), # DiscreteActionProjection(max_N=18, M=n_act), # ) # # # @pytest.mark.skipif( # "ALE/Pong-v5" not in _get_gym_envs(), reason="no Atari OpenAI Gym env available" # ) # def test_composite_env(): # num_workers = 10 # frameskip = 2 # create_env_fn = [ # _make_atari_env(atari_env) # for atari_env in atari_confs["atari_envs"][:num_workers] # ] # kwargs = {"frame_skip": frameskip} # # random_policy = lambda td: td.set( # "action", torch.nn.functional.one_hot(torch.randint(18, (*td.batch_size,)), 18) # ) # p = SerialEnv(num_workers, create_env_fn, create_env_kwargs=kwargs) # seed = p.set_seed(0) # p.reset() # torch.manual_seed(seed) # rollout1 = p.rollout(max_steps=100, policy=random_policy, auto_reset=False) # p.close() # del p # # p = ParallelEnv(num_workers, create_env_fn, create_env_kwargs=kwargs) # seed = p.set_seed(0) # p.reset() # torch.manual_seed(seed) # rollout0 = p.rollout(max_steps=100, policy=random_policy, auto_reset=False) # p.close() # del p # # assert_allclose_td(rollout1, rollout0) @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED, CARTPOLE_VERSIONED]) @pytest.mark.parametrize("frame_skip", [1, 4]) def test_env_seed(env_name, frame_skip, seed=0): env_name = env_name() env = GymEnv(env_name, frame_skip=frame_skip) action = env.action_spec.rand() env.set_seed(seed) td0a = env.reset() td1a = env.step(td0a.clone().set("action", action)) env.set_seed(seed) td0b = env.fake_tensordict() td0b = env.reset(tensordict=td0b) td1b = env.step(td0b.exclude("next").clone().set("action", action)) assert_allclose_td(td0a, td0b.select(*td0a.keys())) assert_allclose_td(td1a, td1b) env.set_seed( seed=seed + 10, ) td0c = env.reset() td1c = env.step(td0c.clone().set("action", action)) with pytest.raises(AssertionError): assert_allclose_td(td0a, td0c.select(*td0a.keys())) with pytest.raises(AssertionError): assert_allclose_td(td1a, td1c) env.close() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED, PONG_VERSIONED]) @pytest.mark.parametrize("frame_skip", [1, 4]) def test_rollout(env_name, frame_skip, seed=0): env_name = env_name() env = GymEnv(env_name, frame_skip=frame_skip) torch.manual_seed(seed) np.random.seed(seed) env.set_seed(seed) env.reset() rollout1 = env.rollout(max_steps=100) assert rollout1.names[-1] == "time" torch.manual_seed(seed) np.random.seed(seed) env.set_seed(seed) env.reset() rollout2 = env.rollout(max_steps=100) assert rollout2.names[-1] == "time" assert_allclose_td(rollout1, rollout2) torch.manual_seed(seed) env.set_seed(seed + 10) env.reset() rollout3 = env.rollout(max_steps=100) with pytest.raises(AssertionError): assert_allclose_td(rollout1, rollout3) env.close() @pytest.mark.parametrize("max_steps", [1, 5]) def test_rollouts_chaining(max_steps, batch_size=(4,), epochs=4): # CountingEnv is done at max_steps + 1, so to emulate it being done at max_steps, we feed max_steps=max_steps - 1 env = CountingEnv(max_steps=max_steps - 1, batch_size=batch_size) policy = CountingEnvCountPolicy( action_spec=env.action_spec, action_key=env.action_key ) input_td = env.reset() for _ in range(epochs): rollout_td = env.rollout( max_steps=max_steps, policy=policy, auto_reset=False, break_when_any_done=False, tensordict=input_td, ) assert (env.count == max_steps).all() input_td = step_mdp( rollout_td[..., -1], keep_other=True, exclude_action=False, exclude_reward=True, reward_keys=env.reward_keys, action_keys=env.action_keys, done_keys=env.done_keys, ) @pytest.mark.parametrize("device", get_default_devices()) def test_rollout_predictability(device): env = MockSerialEnv(device=device) env.set_seed(100) first = 100 % 17 policy = Actor(torch.nn.Linear(1, 1, bias=False)).to(device) for p in policy.parameters(): p.data.fill_(1.0) td_out = env.rollout(policy=policy, max_steps=200) assert ( torch.arange(first, first + 100, device=device) == td_out.get("observation").squeeze() ).all() assert ( torch.arange(first + 1, first + 101, device=device) == td_out.get(("next", "observation")).squeeze() ).all() assert ( torch.arange(first + 1, first + 101, device=device) == td_out.get(("next", "reward")).squeeze() ).all() assert ( torch.arange(first, first + 100, device=device) == td_out.get("action").squeeze() ).all() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED]) @pytest.mark.parametrize("frame_skip", [1]) @pytest.mark.parametrize("truncated_key", ["truncated", "done"]) @pytest.mark.parametrize("parallel", [False, True]) def test_rollout_reset( env_name, frame_skip, parallel, truncated_key, maybe_fork_ParallelEnv, seed=0 ): env_name = env_name() envs = [] for horizon in [20, 30, 40]: envs.append( lambda horizon=horizon: TransformedEnv( GymEnv(env_name, frame_skip=frame_skip), StepCounter(horizon, truncated_key=truncated_key), ) ) if parallel: env = maybe_fork_ParallelEnv(3, envs) else: env = SerialEnv(3, envs) env.set_seed(100) out = env.rollout(100, break_when_any_done=False) assert out.names[-1] == "time" assert out.shape == torch.Size([3, 100]) assert ( out[..., -1]["step_count"].squeeze().cpu() == torch.tensor([19, 9, 19]) ).all() assert ( out[..., -1]["next", "step_count"].squeeze().cpu() == torch.tensor([20, 10, 20]) ).all() assert ( out["next", truncated_key].squeeze().sum(-1) == torch.tensor([5, 3, 2]) ).all() class TestModelBasedEnvBase: @staticmethod def world_model(): return WorldModelWrapper( SafeModule( ActionObsMergeLinear(5, 4), in_keys=["hidden_observation", "action"], out_keys=["hidden_observation"], ), SafeModule( nn.Linear(4, 1), in_keys=["hidden_observation"], out_keys=["reward"], ), ) @pytest.mark.parametrize("device", get_default_devices()) def test_mb_rollout(self, device, seed=0): torch.manual_seed(seed) np.random.seed(seed) world_model = self.world_model() mb_env = DummyModelBasedEnvBase( world_model, device=device, batch_size=torch.Size([10]) ) check_env_specs(mb_env) rollout = mb_env.rollout(max_steps=100) expected_keys = { ("next", key) for key in (*mb_env.observation_spec.keys(), "reward", "done", "terminated") } expected_keys = expected_keys.union( set(mb_env.input_spec["full_action_spec"].keys()) ) expected_keys = expected_keys.union( set(mb_env.input_spec["full_state_spec"].keys()) ) expected_keys = expected_keys.union({"done", "terminated", "next"}) assert set(rollout.keys(True)) == expected_keys assert rollout[("next", "hidden_observation")].shape == (10, 100, 4) @pytest.mark.parametrize("device", get_default_devices()) def test_mb_env_batch_lock(self, device, seed=0): torch.manual_seed(seed) np.random.seed(seed) world_model = WorldModelWrapper( SafeModule( ActionObsMergeLinear(5, 4), in_keys=["hidden_observation", "action"], out_keys=["hidden_observation"], ), SafeModule( nn.Linear(4, 1), in_keys=["hidden_observation"], out_keys=["reward"], ), ) mb_env = DummyModelBasedEnvBase( world_model, device=device, batch_size=torch.Size([10]) ) assert not mb_env.batch_locked with pytest.raises(RuntimeError, match="batch_locked is a read-only property"): mb_env.batch_locked = False td = mb_env.reset() td["action"] = mb_env.action_spec.rand() td_expanded = td.unsqueeze(-1).expand(10, 2).reshape(-1).to_tensordict() mb_env.step(td) with pytest.raises( RuntimeError, match=re.escape("Expected a tensordict with shape==env.batch_size"), ): mb_env.step(td_expanded) mb_env = DummyModelBasedEnvBase( world_model, device=device, batch_size=torch.Size([]) ) assert not mb_env.batch_locked with pytest.raises(RuntimeError, match="batch_locked is a read-only property"): mb_env.batch_locked = False td = mb_env.reset() td["action"] = mb_env.action_spec.rand() td_expanded = td.expand(2) mb_env.step(td) # we should be able to do a step with a tensordict that has been expended mb_env.step(td_expanded) class TestParallel: @pytest.mark.skipif( not torch.cuda.device_count(), reason="No cuda device detected." ) @pytest.mark.parametrize("parallel", [True, False]) @pytest.mark.parametrize("hetero", [True, False]) @pytest.mark.parametrize("pdevice", [None, "cpu", "cuda"]) @pytest.mark.parametrize("edevice", ["cpu", "cuda"]) @pytest.mark.parametrize("bwad", [True, False]) def test_parallel_devices( self, parallel, hetero, pdevice, edevice, bwad, maybe_fork_ParallelEnv ): if parallel: cls = maybe_fork_ParallelEnv else: cls = SerialEnv if not hetero: env = cls( 2, lambda: ContinuousActionVecMockEnv(device=edevice), device=pdevice ) else: env1 = lambda: ContinuousActionVecMockEnv(device=edevice) env2 = lambda: TransformedEnv(ContinuousActionVecMockEnv(device=edevice)) env = cls(2, [env1, env2], device=pdevice) r = env.rollout(2, break_when_any_done=bwad) if pdevice is not None: assert env.device.type == torch.device(pdevice).type assert r.device.type == torch.device(pdevice).type assert all( item.device.type == torch.device(pdevice).type for item in r.values(True, True) ) else: assert env.device.type == torch.device(edevice).type assert r.device.type == torch.device(edevice).type assert all( item.device.type == torch.device(edevice).type for item in r.values(True, True) ) if parallel: assert ( env.shared_tensordict_parent.device.type == torch.device(edevice).type ) @pytest.mark.parametrize("start_method", [None, "fork"]) def test_serial_for_single(self, maybe_fork_ParallelEnv, start_method): env = ParallelEnv( 1, ContinuousActionVecMockEnv, serial_for_single=True, mp_start_method=start_method, ) assert isinstance(env, SerialEnv) env = ParallelEnv(1, ContinuousActionVecMockEnv, mp_start_method=start_method) assert isinstance(env, ParallelEnv) env = ParallelEnv( 2, ContinuousActionVecMockEnv, serial_for_single=True, mp_start_method=start_method, ) assert isinstance(env, ParallelEnv) @pytest.mark.parametrize("num_parallel_env", [1, 10]) @pytest.mark.parametrize("env_batch_size", [[], (32,), (32, 1), (32, 0)]) def test_env_with_batch_size( self, num_parallel_env, env_batch_size, maybe_fork_ParallelEnv ): env = MockBatchedLockedEnv(device="cpu", batch_size=torch.Size(env_batch_size)) env.set_seed(1) parallel_env = maybe_fork_ParallelEnv(num_parallel_env, lambda: env) assert parallel_env.batch_size == (num_parallel_env, *env_batch_size) @pytest.mark.skipif(not _has_dmc, reason="no dm_control") @pytest.mark.parametrize("env_task", ["stand,stand,stand", "stand,walk,stand"]) @pytest.mark.parametrize("share_individual_td", [True, False]) def test_multi_task_serial_parallel( self, env_task, share_individual_td, maybe_fork_ParallelEnv ): tasks = env_task.split(",") if len(tasks) == 1: single_task = True def env_make(): return DMControlEnv("humanoid", tasks[0]) elif len(set(tasks)) == 1 and len(tasks) == 3: single_task = True env_make = [lambda: DMControlEnv("humanoid", tasks[0])] * 3 else: single_task = False env_make = [ lambda task=task: DMControlEnv("humanoid", task) for task in tasks ] if not share_individual_td and not single_task: with pytest.raises( ValueError, match="share_individual_td must be set to None" ): SerialEnv(3, env_make, share_individual_td=share_individual_td) with pytest.raises( ValueError, match="share_individual_td must be set to None" ): maybe_fork_ParallelEnv( 3, env_make, share_individual_td=share_individual_td ) return env_serial = SerialEnv(3, env_make, share_individual_td=share_individual_td) env_serial.start() assert env_serial._single_task is single_task env_parallel = maybe_fork_ParallelEnv( 3, env_make, share_individual_td=share_individual_td ) env_parallel.start() assert env_parallel._single_task is single_task env_serial.set_seed(0) torch.manual_seed(0) td_serial = env_serial.rollout(max_steps=50) env_parallel.set_seed(0) torch.manual_seed(0) td_parallel = env_parallel.rollout(max_steps=50) assert_allclose_td(td_serial, td_parallel) @pytest.mark.skipif(not _has_dmc, reason="no dm_control") def test_multitask(self, maybe_fork_ParallelEnv): env1 = DMControlEnv("humanoid", "stand") env1_obs_keys = list(env1.observation_spec.keys()) env2 = DMControlEnv("humanoid", "walk") env2_obs_keys = list(env2.observation_spec.keys()) assert len(env1_obs_keys) assert len(env2_obs_keys) def env1_maker(): return TransformedEnv( DMControlEnv("humanoid", "stand"), Compose( CatTensors(env1_obs_keys, "observation_stand", del_keys=False), CatTensors(env1_obs_keys, "observation"), DoubleToFloat( in_keys=["observation_stand", "observation"], in_keys_inv=["action"], ), ), ) def env2_maker(): return TransformedEnv( DMControlEnv("humanoid", "walk"), Compose( CatTensors(env2_obs_keys, "observation_walk", del_keys=False), CatTensors(env2_obs_keys, "observation"), DoubleToFloat( in_keys=["observation_walk", "observation"], in_keys_inv=["action"], ), ), ) env = maybe_fork_ParallelEnv(2, [env1_maker, env2_maker]) # env = SerialEnv(2, [env1_maker, env2_maker]) assert not env._single_task td = env.rollout(10, return_contiguous=False) assert "observation_walk" not in td.keys() assert "observation_walk" in td[1].keys() assert "observation_walk" not in td[0].keys() assert "observation_stand" in td[0].keys() assert "observation_stand" not in td[1].keys() assert "observation_walk" in td[:, 0][1].keys() assert "observation_walk" not in td[:, 0][0].keys() assert "observation_stand" in td[:, 0][0].keys() assert "observation_stand" not in td[:, 0][1].keys() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize( "env_name", [PENDULUM_VERSIONED, CARTPOLE_VERSIONED] ) # 1226: faster execution @pytest.mark.parametrize("frame_skip", [4]) # 1226: faster execution @pytest.mark.parametrize( "transformed_in,transformed_out", [[True, True], [False, False]] ) # 1226: faster execution def test_parallel_env( self, env_name, frame_skip, transformed_in, transformed_out, T=10, N=3 ): env_name = env_name() env_parallel, env_serial, _, env0 = _make_envs( env_name, frame_skip, transformed_in=transformed_in, transformed_out=transformed_out, N=N, ) td = TensorDict(source={"action": env0.action_spec.rand((N,))}, batch_size=[N]) td1 = env_parallel.step(td) assert not td1.is_shared() assert ("next", "done") in td1.keys(True) assert ("next", "reward") in td1.keys(True) with pytest.raises(RuntimeError): # number of actions does not match number of workers td = TensorDict( source={"action": env0.action_spec.rand((N - 1,))}, batch_size=[N - 1], ) _ = env_parallel.step(td) td_reset = TensorDict(source=rand_reset(env_parallel), batch_size=[N]) env_parallel.reset(tensordict=td_reset) # check that interruption occured because of max_steps or done td = env_parallel.rollout(policy=None, max_steps=T) assert td.shape == torch.Size([N, T]) or td.get(("next", "done")).sum(1).any() env_parallel.close() # env_serial.close() # never opened env0.close() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED]) @pytest.mark.parametrize("frame_skip", [4]) # 1226: faster execution @pytest.mark.parametrize( "transformed_in,transformed_out", [[True, True], [False, False]] ) # 1226: faster execution def test_parallel_env_with_policy( self, env_name, frame_skip, transformed_in, transformed_out, T=10, N=3, ): env_name = env_name() env_parallel, env_serial, _, env0 = _make_envs( env_name, frame_skip, transformed_in=transformed_in, transformed_out=transformed_out, N=N, ) policy = ActorCriticOperator( SafeModule( spec=None, module=nn.LazyLinear(12), in_keys=["observation"], out_keys=["hidden"], ), SafeModule( spec=None, module=nn.LazyLinear(env0.action_spec.shape[-1]), in_keys=["hidden"], out_keys=["action"], ), ValueOperator( module=MLP(out_features=1, num_cells=[]), in_keys=["hidden", "action"] ), ) td = TensorDict(source={"action": env0.action_spec.rand((N,))}, batch_size=[N]) td1 = env_parallel.step(td) assert not td1.is_shared() assert ("next", "done") in td1.keys(True) assert ("next", "reward") in td1.keys(True) with pytest.raises(RuntimeError): # number of actions does not match number of workers td = TensorDict( source={"action": env0.action_spec.rand((N - 1,))}, batch_size=[N - 1], ) _ = env_parallel.step(td) td_reset = TensorDict(source=rand_reset(env_parallel), batch_size=[N]) env_parallel.reset(tensordict=td_reset) td = env_parallel.rollout(policy=policy, max_steps=T) assert ( td.shape == torch.Size([N, T]) or td.get("done").sum(1).all() ), f"{td.shape}, {td.get('done').sum(1)}" env_parallel.close() # env_serial.close() env0.close() @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA required") @pytest.mark.parametrize("heterogeneous", [False, True]) def test_transform_env_transform_no_device( self, heterogeneous, maybe_fork_ParallelEnv ): # Tests non-regression on 1865 def make_env(): return TransformedEnv( ContinuousActionVecMockEnv(), StepCounter(max_steps=3) ) if heterogeneous: make_envs = [EnvCreator(make_env), EnvCreator(make_env)] else: make_envs = make_env penv = maybe_fork_ParallelEnv(2, make_envs) r = penv.rollout(6, break_when_any_done=False) assert r.shape == (2, 6) try: env = TransformedEnv(penv) r = env.rollout(6, break_when_any_done=False) assert r.shape == (2, 6) finally: penv.close() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize( "env_name", [PENDULUM_VERSIONED], ) # PONG_VERSIONED]) # 1226: efficiency @pytest.mark.parametrize("frame_skip", [4]) @pytest.mark.parametrize( "transformed_in,transformed_out", [[True, True], [False, False]] ) # 1226: effociency @pytest.mark.parametrize("static_seed", [False, True]) def test_parallel_env_seed( self, env_name, frame_skip, transformed_in, transformed_out, static_seed ): env_name = env_name() env_parallel, env_serial, _, _ = _make_envs( env_name, frame_skip, transformed_in, transformed_out, 5 ) out_seed_serial = env_serial.set_seed(0, static_seed=static_seed) if static_seed: assert out_seed_serial == 0 td0_serial = env_serial.reset() torch.manual_seed(0) td_serial = env_serial.rollout( max_steps=10, auto_reset=False, tensordict=td0_serial ).contiguous() key = "pixels" if "pixels" in td_serial.keys() else "observation" torch.testing.assert_close( td_serial[:, 0].get(("next", key)), td_serial[:, 1].get(key) ) out_seed_parallel = env_parallel.set_seed(0, static_seed=static_seed) if static_seed: assert out_seed_serial == 0 td0_parallel = env_parallel.reset() torch.manual_seed(0) assert out_seed_parallel == out_seed_serial td_parallel = env_parallel.rollout( max_steps=10, auto_reset=False, tensordict=td0_parallel ).contiguous() torch.testing.assert_close( td_parallel[:, :-1].get(("next", key)), td_parallel[:, 1:].get(key) ) assert_allclose_td(td0_serial, td0_parallel) assert_allclose_td(td_serial[:, 0], td_parallel[:, 0]) # first step assert_allclose_td(td_serial[:, 1], td_parallel[:, 1]) # second step assert_allclose_td(td_serial, td_parallel) env_parallel.close() env_serial.close() @pytest.mark.skipif(not _has_gym, reason="no gym") def test_parallel_env_shutdown(self, maybe_fork_ParallelEnv): env_make = EnvCreator(lambda: GymEnv(PENDULUM_VERSIONED())) env = maybe_fork_ParallelEnv(4, env_make) env.reset() assert not env.is_closed env.rand_step() assert not env.is_closed env.close() assert env.is_closed env.reset() assert not env.is_closed env.close() @pytest.mark.parametrize("parallel", [True, False]) def test_parallel_env_custom_method(self, parallel, maybe_fork_ParallelEnv): # define env if parallel: env = maybe_fork_ParallelEnv(2, lambda: DiscreteActionVecMockEnv()) else: env = SerialEnv(2, lambda: DiscreteActionVecMockEnv()) # we must start the environment first env.reset() assert all(result == 0 for result in env.custom_fun()) assert all(result == 1 for result in env.custom_attr) assert all(result == 2 for result in env.custom_prop) # to be fixed env.close() @pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda to test on") @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.parametrize("frame_skip", [4]) @pytest.mark.parametrize("device", [0]) @pytest.mark.parametrize( "env_name", [PENDULUM_VERSIONED] ) # 1226: Skip PONG for efficiency @pytest.mark.parametrize( "transformed_in,transformed_out,open_before", [ # 1226: efficiency [True, True, True], [True, True, False], [False, False, True], ], ) def test_parallel_env_cast( self, env_name, frame_skip, transformed_in, transformed_out, device, open_before, N=3, ): env_name = env_name() # tests casting to device env_parallel, env_serial, _, env0 = _make_envs( env_name, frame_skip, transformed_in=transformed_in, transformed_out=transformed_out, N=N, ) if open_before: td_cpu = env0.rollout(max_steps=10) assert td_cpu.device == torch.device("cpu") env0 = env0.to(device) assert env0.observation_spec.device == torch.device(device) assert env0.action_spec.device == torch.device(device) assert env0.reward_spec.device == torch.device(device) assert env0.device == torch.device(device) td_device = env0.reset() assert td_device.device == torch.device(device), env0 td_device = env0.rand_step() assert td_device.device == torch.device(device), env0 td_device = env0.rollout(max_steps=10) assert td_device.device == torch.device(device), env0 if open_before: td_cpu = env_serial.rollout(max_steps=10) assert td_cpu.device == torch.device("cpu") observation_spec = env_serial.observation_spec.clone() done_spec = env_serial.done_spec.clone() reward_spec = env_serial.reward_spec.clone() action_spec = env_serial.action_spec.clone() state_spec = env_serial.state_spec.clone() env_serial = env_serial.to(device) assert env_serial.observation_spec.device == torch.device(device) assert env_serial.action_spec.device == torch.device(device) assert env_serial.reward_spec.device == torch.device(device) assert env_serial.device == torch.device(device) assert env_serial.observation_spec == observation_spec.to(device) assert env_serial.action_spec == action_spec.to(device) assert env_serial.reward_spec == reward_spec.to(device) assert env_serial.done_spec == done_spec.to(device) assert env_serial.state_spec == state_spec.to(device) td_device = env_serial.reset() assert td_device.device == torch.device(device), env_serial td_device = env_serial.rand_step() assert td_device.device == torch.device(device), env_serial td_device = env_serial.rollout(max_steps=10) assert td_device.device == torch.device(device), env_serial if open_before: td_cpu = env_parallel.rollout(max_steps=10) assert td_cpu.device == torch.device("cpu") observation_spec = env_parallel.observation_spec.clone() done_spec = env_parallel.done_spec.clone() reward_spec = env_parallel.reward_spec.clone() action_spec = env_parallel.action_spec.clone() state_spec = env_parallel.state_spec.clone() env_parallel = env_parallel.to(device) assert env_parallel.observation_spec.device == torch.device(device) assert env_parallel.action_spec.device == torch.device(device) assert env_parallel.reward_spec.device == torch.device(device) assert env_parallel.device == torch.device(device) assert env_parallel.observation_spec == observation_spec.to(device) assert env_parallel.action_spec == action_spec.to(device) assert env_parallel.reward_spec == reward_spec.to(device) assert env_parallel.done_spec == done_spec.to(device) assert env_parallel.state_spec == state_spec.to(device) td_device = env_parallel.reset() assert td_device.device == torch.device(device), env_parallel td_device = env_parallel.rand_step() assert td_device.device == torch.device(device), env_parallel td_device = env_parallel.rollout(max_steps=10) assert td_device.device == torch.device(device), env_parallel env_parallel.close() env_serial.close() env0.close() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda device detected") @pytest.mark.parametrize("frame_skip", [4]) @pytest.mark.parametrize("device", [0]) @pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED]) # 1226: efficiency @pytest.mark.parametrize( "transformed_in,transformed_out", [ # 1226 [True, True], [False, False], ], ) def test_parallel_env_device( self, env_name, frame_skip, transformed_in, transformed_out, device ): env_name = env_name() # tests creation on device torch.manual_seed(0) N = 3 env_parallel, env_serial, _, env0 = _make_envs( env_name, frame_skip, transformed_in=transformed_in, transformed_out=transformed_out, device=device, N=N, ) assert env0.device == torch.device(device) out = env0.rollout(max_steps=20) assert out.device == torch.device(device) assert env_serial.device == torch.device(device) out = env_serial.rollout(max_steps=20) assert out.device == torch.device(device) assert env_parallel.device == torch.device(device) out = env_parallel.rollout(max_steps=20) assert out.device == torch.device(device) env_parallel.close() env_serial.close() env0.close() @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.flaky(reruns=3, reruns_delay=1) @pytest.mark.parametrize( "env_name", [PENDULUM_VERSIONED] ) # 1226: No pong for efficiency @pytest.mark.parametrize("frame_skip", [4]) @pytest.mark.parametrize( "device", [torch.device("cuda:0") if torch.cuda.device_count() else torch.device("cpu")], ) def test_parallel_env_transform_consistency(self, env_name, frame_skip, device): env_name = env_name() env_parallel_in, env_serial_in, _, env0_in = _make_envs( env_name, frame_skip, transformed_in=True, transformed_out=False, device=device, N=3, ) env_parallel_out, env_serial_out, _, env0_out = _make_envs( env_name, frame_skip, transformed_in=False, transformed_out=True, device=device, N=3, ) torch.manual_seed(0) env_parallel_in.set_seed(0) r_in = env_parallel_in.rollout(max_steps=20) torch.manual_seed(0) env_parallel_out.set_seed(0) r_out = env_parallel_out.rollout(max_steps=20) assert_allclose_td(r_in, r_out) env_parallel_in.close() env_parallel_out.close() torch.manual_seed(0) env_serial_in.set_seed(0) r_in = env_serial_in.rollout(max_steps=20) torch.manual_seed(0) env_serial_out.set_seed(0) r_out = env_serial_out.rollout(max_steps=20) assert_allclose_td(r_in, r_out) env_serial_in.close() env_serial_out.close() torch.manual_seed(0) env0_in.set_seed(0) r_in = env0_in.rollout(max_steps=20) torch.manual_seed(0) env0_out.set_seed(0) r_out = env0_out.rollout(max_steps=20) assert_allclose_td(r_in, r_out) env0_in.close() env0_in.close() @pytest.mark.parametrize("parallel", [True, False]) def test_parallel_env_kwargs_set(self, parallel, maybe_fork_ParallelEnv): num_env = 2 def make_make_env(): def make_transformed_env(seed=None): env = DiscreteActionConvMockEnv() if seed is not None: env.set_seed(seed) return env return make_transformed_env _class = maybe_fork_ParallelEnv if parallel else SerialEnv def env_fn1(seed): env = _class( num_workers=num_env, create_env_fn=make_make_env(), create_env_kwargs=[{"seed": i} for i in range(seed, seed + num_env)], ) return env def env_fn2(seed): env = _class( num_workers=num_env, create_env_fn=make_make_env(), ) env.update_kwargs([{"seed": i} for i in range(seed, seed + num_env)]) return env env1 = env_fn1(100) env2 = env_fn2(100) env1.start() env2.start() for c1, c2 in zip(env1.counter, env2.counter): assert c1 == c2 env1.close() env2.close() @pytest.mark.parametrize("batch_size", [(32, 5), (4,), (1,), ()]) @pytest.mark.parametrize("n_workers", [2, 1]) def test_parallel_env_reset_flag( self, batch_size, n_workers, maybe_fork_ParallelEnv, max_steps=3 ): torch.manual_seed(1) env = maybe_fork_ParallelEnv( n_workers, lambda: CountingEnv(max_steps=max_steps, batch_size=batch_size) ) env.set_seed(1) action = env.action_spec.rand() action[:] = 1 for i in range(max_steps): td = env.step( TensorDict( {"action": action}, batch_size=env.batch_size, device=env.device ) ) assert (td["next", "done"] == 0).all() assert (td["next"]["observation"] == i + 1).all() td = env.step( TensorDict({"action": action}, batch_size=env.batch_size, device=env.device) ) assert (td["next", "done"] == 1).all() assert (td["next"]["observation"] == max_steps + 1).all() td_reset = TensorDict( rand_reset(env), batch_size=env.batch_size, device=env.device ) td_reset.update(td.get("next").exclude("reward")) reset = td_reset["_reset"] td_reset = env.reset(td_reset) env.close() assert (td_reset["done"][reset] == 0).all() assert (td_reset["observation"][reset] == 0).all() assert (td_reset["done"][~reset] == 1).all() assert (td_reset["observation"][~reset] == max_steps + 1).all() @pytest.mark.parametrize("nested_obs_action", [True, False]) @pytest.mark.parametrize("nested_done", [True, False]) @pytest.mark.parametrize("nested_reward", [True, False]) @pytest.mark.parametrize("env_type", ["serial", "parallel"]) def test_parallel_env_nested( self, nested_obs_action, nested_done, nested_reward, env_type, maybe_fork_ParallelEnv, n_envs=2, batch_size=(32,), nested_dim=5, rollout_length=3, seed=1, ): env_fn = lambda: NestedCountingEnv( nest_done=nested_done, nest_reward=nested_reward, nest_obs_action=nested_obs_action, batch_size=batch_size, nested_dim=nested_dim, ) if env_type == "serial": env = SerialEnv(n_envs, env_fn) else: env = maybe_fork_ParallelEnv(n_envs, env_fn) try: env.set_seed(seed) batch_size = (n_envs, *batch_size) td = env.reset() assert td.batch_size == batch_size if nested_done or nested_obs_action: assert td["data"].batch_size == (*batch_size, nested_dim) if not nested_done and not nested_reward and not nested_obs_action: assert "data" not in td.keys() policy = CountingEnvCountPolicy(env.action_spec, env.action_key) td = env.rollout(rollout_length, policy) assert td.batch_size == (*batch_size, rollout_length) if nested_done or nested_obs_action: assert td["data"].batch_size == ( *batch_size, rollout_length, nested_dim, ) if nested_reward or nested_done or nested_obs_action: assert td["next", "data"].batch_size == ( *batch_size, rollout_length, nested_dim, ) if not nested_done and not nested_reward and not nested_obs_action: assert "data" not in td.keys() assert "data" not in td["next"].keys() if nested_obs_action: assert "observation" not in td.keys() assert (td[..., -1]["data", "states"] == 2).all() else: assert ("data", "states") not in td.keys(True, True) assert (td[..., -1]["observation"] == 2).all() finally: try: env.close() del env except Exception: pass @pytest.mark.parametrize("batch_size", [(), (2,), (32, 5)]) def test_env_base_reset_flag(batch_size, max_steps=3): torch.manual_seed(0) env = CountingEnv(max_steps=max_steps, batch_size=batch_size) env.set_seed(1) action = env.action_spec.rand() action[:] = 1 for i in range(max_steps): td = env.step( TensorDict({"action": action}, batch_size=env.batch_size, device=env.device) ) assert (td["next", "done"] == 0).all() assert (td["next", "observation"] == i + 1).all() td = env.step( TensorDict({"action": action}, batch_size=env.batch_size, device=env.device) ) assert (td["next", "done"] == 1).all() assert (td["next", "observation"] == max_steps + 1).all() td_reset = TensorDict(rand_reset(env), batch_size=env.batch_size, device=env.device) td_reset.update(td.get("next").exclude("reward")) reset = td_reset["_reset"] td_reset = env.reset(td_reset) assert (td_reset["done"][reset] == 0).all() assert (td_reset["observation"][reset] == 0).all() assert (td_reset["done"][~reset] == 1).all() assert (td_reset["observation"][~reset] == max_steps + 1).all() @pytest.mark.skipif(not _has_gym, reason="no gym") def test_seed(): torch.manual_seed(0) env1 = GymEnv(PENDULUM_VERSIONED()) env1.set_seed(0) state0_1 = env1.reset() state1_1 = env1.step(state0_1.set("action", env1.action_spec.rand())) torch.manual_seed(0) env2 = GymEnv(PENDULUM_VERSIONED()) env2.set_seed(0) state0_2 = env2.reset() state1_2 = env2.step(state0_2.set("action", env2.action_spec.rand())) assert_allclose_td(state0_1, state0_2) assert_allclose_td(state1_1, state1_2) env1.set_seed(0) torch.manual_seed(0) rollout1 = env1.rollout(max_steps=30) env2.set_seed(0) torch.manual_seed(0) rollout2 = env2.rollout(max_steps=30) torch.testing.assert_close( rollout1["observation"][1:], rollout1[("next", "observation")][:-1] ) torch.testing.assert_close( rollout2["observation"][1:], rollout2[("next", "observation")][:-1] ) torch.testing.assert_close(rollout1["observation"], rollout2["observation"]) class TestStepMdp: @pytest.mark.parametrize("keep_other", [True, False]) @pytest.mark.parametrize("exclude_reward", [True, False]) @pytest.mark.parametrize("exclude_done", [True, False]) @pytest.mark.parametrize("exclude_action", [True, False]) @pytest.mark.parametrize("has_out", [True, False]) @pytest.mark.parametrize("lazy_stack", [False, True]) def test_steptensordict( self, keep_other, exclude_reward, exclude_done, exclude_action, has_out, lazy_stack, ): torch.manual_seed(0) tensordict = TensorDict( { "reward": torch.randn(4, 1), "done": torch.zeros(4, 1, dtype=torch.bool), "ledzep": torch.randn(4, 2), "next": { "ledzep": torch.randn(4, 2), "reward": torch.randn(4, 1), "done": torch.zeros(4, 1, dtype=torch.bool), }, "beatles": torch.randn(4, 1), "action": torch.randn(4, 2), }, [4], ) if lazy_stack: # let's spice this a little bit tds = tensordict.unbind(0) tds[0]["this", "one"] = torch.zeros(2) tds[1]["but", "not", "this", "one"] = torch.ones(2) tds[0]["next", "this", "one"] = torch.ones(2) * 2 tensordict = LazyStackedTensorDict.lazy_stack(tds, 0) next_tensordict = TensorDict({}, [4]) if has_out else None if has_out and lazy_stack: next_tensordict = LazyStackedTensorDict.lazy_stack( next_tensordict.unbind(0), 0 ) out = step_mdp( tensordict.lock_(), keep_other=keep_other, exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, next_tensordict=next_tensordict, ) assert "ledzep" in out.keys() if lazy_stack: assert (out["ledzep"] == tensordict["next", "ledzep"]).all() assert (out[0]["this", "one"] == 2).all() if keep_other: assert (out[1]["but", "not", "this", "one"] == 1).all() else: assert out["ledzep"] is tensordict["next", "ledzep"] if keep_other: assert "beatles" in out.keys() if lazy_stack: assert (out["beatles"] == tensordict["beatles"]).all() else: assert out["beatles"] is tensordict["beatles"] else: assert "beatles" not in out.keys() if not exclude_reward: assert "reward" in out.keys() if lazy_stack: assert (out["reward"] == tensordict["next", "reward"]).all() else: assert out["reward"] is tensordict["next", "reward"] else: assert "reward" not in out.keys() if not exclude_action: assert "action" in out.keys() if lazy_stack: assert (out["action"] == tensordict["action"]).all() else: assert out["action"] is tensordict["action"] else: assert "action" not in out.keys() if not exclude_done: assert "done" in out.keys() if lazy_stack: assert (out["done"] == tensordict["next", "done"]).all() else: assert out["done"] is tensordict["next", "done"] else: assert "done" not in out.keys() if has_out: assert out is next_tensordict @pytest.mark.parametrize("keep_other", [True, False]) @pytest.mark.parametrize("exclude_reward", [True, False]) @pytest.mark.parametrize("exclude_done", [False, True]) @pytest.mark.parametrize("exclude_action", [False, True]) @pytest.mark.parametrize( "envcls", [ ContinuousActionVecMockEnv, CountingBatchedEnv, CountingEnv, NestedCountingEnv, CountingBatchedEnv, HeterogeneousCountingEnv, DiscreteActionConvMockEnv, ], ) def test_step_class( self, envcls, keep_other, exclude_reward, exclude_done, exclude_action, ): torch.manual_seed(0) env = envcls() tensordict = env.rand_step(env.reset()) out = step_mdp( tensordict.lock_(), keep_other=keep_other, exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, done_keys=env.done_keys, action_keys=env.action_keys, reward_keys=env.reward_keys, ) step_func = _StepMDP( env, keep_other=keep_other, exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, ) out2 = step_func(tensordict) assert (out == out2).all() @pytest.mark.parametrize("nested_obs", [True, False]) @pytest.mark.parametrize("nested_action", [True, False]) @pytest.mark.parametrize("nested_done", [True, False]) @pytest.mark.parametrize("nested_reward", [True, False]) @pytest.mark.parametrize("nested_other", [True, False]) @pytest.mark.parametrize("exclude_reward", [True, False]) @pytest.mark.parametrize("exclude_done", [True, False]) @pytest.mark.parametrize("exclude_action", [True, False]) @pytest.mark.parametrize("keep_other", [True, False]) def test_nested( self, nested_obs, nested_action, nested_done, nested_reward, nested_other, exclude_reward, exclude_done, exclude_action, keep_other, ): td_batch_size = (4,) nested_batch_size = (4, 3) nested_key = ("data",) td = TensorDict( { nested_key: TensorDict({}, nested_batch_size), "next": { nested_key: TensorDict({}, nested_batch_size), }, }, td_batch_size, ) reward_key = "reward" if nested_reward: reward_key = nested_key + (reward_key,) done_key = "done" if nested_done: done_key = nested_key + (done_key,) action_key = "action" if nested_action: action_key = nested_key + (action_key,) obs_key = "state" if nested_obs: obs_key = nested_key + (obs_key,) other_key = "other" if nested_other: other_key = nested_key + (other_key,) td[reward_key] = torch.zeros(*nested_batch_size, 1) td[done_key] = torch.zeros(*nested_batch_size, 1) td[obs_key] = torch.zeros(*nested_batch_size, 1) td[action_key] = torch.zeros(*nested_batch_size, 1) td[other_key] = torch.zeros(*nested_batch_size, 1) td["next", reward_key] = torch.ones(*nested_batch_size, 1) td["next", done_key] = torch.ones(*nested_batch_size, 1) td["next", obs_key] = torch.ones(*nested_batch_size, 1) input_td = td td = step_mdp( td.lock_(), exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, reward_keys=reward_key, done_keys=done_key, action_keys=action_key, keep_other=keep_other, ) td_nested_keys = td.keys(True, True) td_keys = td.keys() assert td.batch_size == input_td.batch_size # Obs will always be present assert obs_key in td_nested_keys # Nested key should not be present in this specific conditions if ( (exclude_done or not nested_done) and (exclude_reward or not nested_reward) and (exclude_action or not nested_action) and not nested_obs and ((not keep_other) or (keep_other and not nested_other)) ): assert nested_key[0] not in td_keys else: # Nested key is present assert not td[nested_key] is input_td["next", nested_key] assert not td[nested_key] is input_td[nested_key] assert td[nested_key].batch_size == nested_batch_size # If we exclude everything we are left with just obs if exclude_done and exclude_reward and exclude_action and not keep_other: if nested_obs: assert len(td_nested_keys) == 1 and list(td_nested_keys)[0] == obs_key else: assert len(td_nested_keys) == 1 and list(td_nested_keys)[0] == obs_key # Key-wise exclusions if not exclude_reward: assert reward_key in td_nested_keys assert (td[reward_key] == 1).all() else: assert reward_key not in td_nested_keys if not exclude_action: assert action_key in td_nested_keys assert (td[action_key] == 0).all() else: assert action_key not in td_nested_keys if not exclude_done: assert done_key in td_nested_keys assert (td[done_key] == 1).all() else: assert done_key not in td_nested_keys if keep_other: assert other_key in td_nested_keys, other_key assert (td[other_key] == 0).all() else: assert other_key not in td_nested_keys @pytest.mark.parametrize("nested_other", [True, False]) @pytest.mark.parametrize("exclude_reward", [True, False]) @pytest.mark.parametrize("exclude_done", [True, False]) @pytest.mark.parametrize("exclude_action", [True, False]) @pytest.mark.parametrize("keep_other", [True, False]) def test_nested_partially( self, nested_other, exclude_reward, exclude_done, exclude_action, keep_other, ): # General td_batch_size = (4,) nested_batch_size = (4, 3) nested_key = ("data",) reward_key = "reward" done_key = "done" action_key = "action" obs_key = "state" other_key = "beatles" if nested_other: other_key = nested_key + (other_key,) # Nested only in root td = TensorDict( { nested_key: TensorDict({}, nested_batch_size), "next": {}, }, td_batch_size, ) td[reward_key] = torch.zeros(*nested_batch_size, 1) td[done_key] = torch.zeros(*nested_batch_size, 1) td[obs_key] = torch.zeros(*nested_batch_size, 1) td[action_key] = torch.zeros(*nested_batch_size, 1) td[other_key] = torch.zeros(*nested_batch_size, 1) td["next", reward_key] = torch.zeros(*nested_batch_size, 1) td["next", done_key] = torch.zeros(*nested_batch_size, 1) td["next", obs_key] = torch.zeros(*nested_batch_size, 1) td = step_mdp( td.lock_(), exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, reward_keys=reward_key, done_keys=done_key, action_keys=action_key, keep_other=keep_other, ) td_keys_nested = td.keys(True, True) td_keys = td.keys() if keep_other: if nested_other: assert nested_key[0] in td_keys assert td[nested_key].batch_size == nested_batch_size else: assert nested_key[0] not in td_keys assert (td[other_key] == 0).all() else: assert other_key not in td_keys_nested # Nested only in next td = TensorDict( { "next": {nested_key: TensorDict({}, nested_batch_size)}, }, td_batch_size, ) td[reward_key] = torch.zeros(*nested_batch_size, 1) td[done_key] = torch.zeros(*nested_batch_size, 1) td[obs_key] = torch.zeros(*nested_batch_size, 1) td[action_key] = torch.zeros(*nested_batch_size, 1) td["next", other_key] = torch.zeros(*nested_batch_size, 1) td["next", reward_key] = torch.zeros(*nested_batch_size, 1) td["next", done_key] = torch.zeros(*nested_batch_size, 1) td["next", obs_key] = torch.zeros(*nested_batch_size, 1) td = step_mdp( td.lock_(), exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, reward_keys=reward_key, done_keys=done_key, action_keys=action_key, keep_other=keep_other, ) td_keys = td.keys() if nested_other: assert nested_key[0] in td_keys assert td[nested_key].batch_size == nested_batch_size else: assert nested_key[0] not in td_keys assert (td[other_key] == 0).all() @pytest.mark.parametrize("het_action", [True, False]) @pytest.mark.parametrize("het_done", [True, False]) @pytest.mark.parametrize("het_reward", [True, False]) @pytest.mark.parametrize("het_other", [True, False]) @pytest.mark.parametrize("het_obs", [True, False]) @pytest.mark.parametrize("exclude_reward", [True, False]) @pytest.mark.parametrize("exclude_done", [True, False]) @pytest.mark.parametrize("exclude_action", [True, False]) @pytest.mark.parametrize("keep_other", [True, False]) def test_heterogeenous( self, het_action, het_done, het_reward, het_other, het_obs, exclude_reward, exclude_done, exclude_action, keep_other, ): td_batch_size = 4 nested_dim = 3 nested_batch_size = (td_batch_size, nested_dim) nested_key = ("data",) reward_key = "reward" nested_reward_key = nested_key + (reward_key,) done_key = "done" nested_done_key = nested_key + (done_key,) action_key = "action" nested_action_key = nested_key + (action_key,) obs_key = "state" nested_obs_key = nested_key + (obs_key,) other_key = "beatles" nested_other_key = nested_key + (other_key,) tds = [] for i in range(1, nested_dim + 1): tds.append( TensorDict( { nested_key: TensorDict( { reward_key: torch.zeros( td_batch_size, i if het_reward else 1 ), done_key: torch.zeros( td_batch_size, i if het_done else 1 ), action_key: torch.zeros( td_batch_size, i if het_action else 1 ), obs_key: torch.zeros( td_batch_size, i if het_obs else 1 ), other_key: torch.zeros( td_batch_size, i if het_other else 1 ), }, [td_batch_size], ), "next": { nested_key: TensorDict( { reward_key: torch.ones( td_batch_size, i if het_reward else 1 ), done_key: torch.ones( td_batch_size, i if het_done else 1 ), obs_key: torch.ones( td_batch_size, i if het_obs else 1 ), }, [td_batch_size], ), }, }, [td_batch_size], ) ) lazy_td = LazyStackedTensorDict.lazy_stack(tds, dim=1) td = step_mdp( lazy_td.lock_(), exclude_reward=exclude_reward, exclude_done=exclude_done, exclude_action=exclude_action, reward_keys=nested_reward_key, done_keys=nested_done_key, action_keys=nested_action_key, keep_other=keep_other, ) td_nested_keys = td.keys(True, True) td_keys = td.keys() for i in range(nested_dim): if het_obs: assert td[..., i][nested_obs_key].shape == (td_batch_size, i + 1) else: assert td[..., i][nested_obs_key].shape == (td_batch_size, 1) assert (td[..., i][nested_obs_key] == 1).all() if exclude_reward: assert nested_reward_key not in td_keys else: for i in range(nested_dim): if het_reward: assert td[..., i][nested_reward_key].shape == (td_batch_size, i + 1) else: assert td[..., i][nested_reward_key].shape == (td_batch_size, 1) assert (td[..., i][nested_reward_key] == 1).all() if exclude_done: assert nested_done_key not in td_keys else: for i in range(nested_dim): if het_done: assert td[..., i][nested_done_key].shape == (td_batch_size, i + 1) else: assert td[..., i][nested_done_key].shape == (td_batch_size, 1) assert (td[..., i][nested_done_key] == 1).all() if exclude_action: assert nested_action_key not in td_keys else: for i in range(nested_dim): if het_action: assert td[..., i][nested_action_key].shape == (td_batch_size, i + 1) else: assert td[..., i][nested_action_key].shape == (td_batch_size, 1) assert (td[..., i][nested_action_key] == 0).all() if not keep_other: assert nested_other_key not in td_keys else: for i in range(nested_dim): if het_other: assert td[..., i][nested_other_key].shape == (td_batch_size, i + 1) else: assert td[..., i][nested_other_key].shape == (td_batch_size, 1) assert (td[..., i][nested_other_key] == 0).all() @pytest.mark.parametrize("device", get_default_devices()) def test_batch_locked(device): env = MockBatchedLockedEnv(device) assert env.batch_locked with pytest.raises(RuntimeError, match="batch_locked is a read-only property"): env.batch_locked = False td = env.reset() td["action"] = env.action_spec.rand() td_expanded = td.expand(2).clone() _ = env.step(td) with pytest.raises( RuntimeError, match="Expected a tensordict with shape==env.batch_size, " ): env.step(td_expanded) @pytest.mark.parametrize("device", get_default_devices()) def test_batch_unlocked(device): env = MockBatchedUnLockedEnv(device) assert not env.batch_locked with pytest.raises(RuntimeError, match="batch_locked is a read-only property"): env.batch_locked = False td = env.reset() td["action"] = env.action_spec.rand() td_expanded = td.expand(2).clone() td = env.step(td) env.step(td_expanded) @pytest.mark.parametrize("device", get_default_devices()) def test_batch_unlocked_with_batch_size(device): env = MockBatchedUnLockedEnv(device, batch_size=torch.Size([2])) assert not env.batch_locked with pytest.raises(RuntimeError, match="batch_locked is a read-only property"): env.batch_locked = False td = env.reset() td["action"] = env.action_spec.rand() td_expanded = td.expand(2, 2).reshape(-1).to_tensordict() td = env.step(td) with pytest.raises(RuntimeError, match="Expected a tensordict with shape"): env.step(td_expanded) class TestInfoDict: @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.skipif( gym_version is None or gym_version < version.parse("0.20.0"), reason="older versions of half-cheetah do not have 'x_position' info key.", ) @pytest.mark.parametrize("device", get_default_devices()) def test_info_dict_reader(self, device, seed=0): try: import gymnasium as gym except ModuleNotFoundError: import gym env = GymWrapper(gym.make(HALFCHEETAH_VERSIONED()), device=device) env.set_info_dict_reader(default_info_dict_reader(["x_position"])) assert "x_position" in env.observation_spec.keys() assert isinstance( env.observation_spec["x_position"], UnboundedContinuousTensorSpec ) tensordict = env.reset() tensordict = env.rand_step(tensordict) assert env.observation_spec["x_position"].is_in( tensordict[("next", "x_position")] ) for spec in ( {"x_position": UnboundedContinuousTensorSpec(10)}, None, CompositeSpec(x_position=UnboundedContinuousTensorSpec(10), shape=[]), [UnboundedContinuousTensorSpec(10)], ): env2 = GymWrapper(gym.make("HalfCheetah-v4")) env2.set_info_dict_reader( default_info_dict_reader(["x_position"], spec=spec) ) tensordict2 = env2.reset() tensordict2 = env2.rand_step(tensordict2) assert env2.observation_spec["x_position"].is_in( tensordict2[("next", "x_position")] ) @pytest.mark.skipif(not _has_gym, reason="no gym") @pytest.mark.skipif( gym_version is None or gym_version < version.parse("0.20.0"), reason="older versions of half-cheetah do not have 'x_position' info key.", ) @pytest.mark.parametrize("device", get_default_devices()) def test_auto_register(self, device, maybe_fork_ParallelEnv): try: import gymnasium as gym except ModuleNotFoundError: import gym env = GymWrapper(gym.make(HALFCHEETAH_VERSIONED()), device=device) check_env_specs(env) env.set_info_dict_reader() with pytest.raises( AssertionError, match="The keys of the specs and data do not match" ): check_env_specs(env) env = GymWrapper(gym.make(HALFCHEETAH_VERSIONED()), device=device) env = env.auto_register_info_dict() check_env_specs(env) # check that the env can be executed in parallel penv = maybe_fork_ParallelEnv( 2, lambda: GymWrapper( gym.make(HALFCHEETAH_VERSIONED()), device=device ).auto_register_info_dict(), ) senv = maybe_fork_ParallelEnv( 2, lambda: GymWrapper( gym.make(HALFCHEETAH_VERSIONED()), device=device ).auto_register_info_dict(), ) try: torch.manual_seed(0) penv.set_seed(0) rolp = penv.rollout(10) torch.manual_seed(0) senv.set_seed(0) rols = senv.rollout(10) assert_allclose_td(rolp, rols) finally: penv.close() del penv senv.close() del senv def test_make_spec_from_td(): data = TensorDict( { "obs": torch.randn(3), "action": torch.zeros(2, dtype=torch.int), "next": { "obs": torch.randn(3), "reward": torch.randn(1), "done": torch.zeros(1, dtype=torch.bool), }, }, [], ) spec = make_composite_from_td(data) assert (spec.zero() == data.zero_()).all() for key, val in data.items(True, True): assert val.dtype is spec[key].dtype @pytest.mark.parametrize("group_type", list(MarlGroupMapType)) def test_marl_group_type(group_type): agent_names = ["agent"] check_marl_grouping(group_type.get_group_map(agent_names), agent_names) agent_names = ["agent", "agent"] with pytest.raises(ValueError): check_marl_grouping(group_type.get_group_map(agent_names), agent_names) agent_names = ["agent_0", "agent_1"] check_marl_grouping(group_type.get_group_map(agent_names), agent_names) agent_names = [] with pytest.raises(ValueError): check_marl_grouping(group_type.get_group_map(agent_names), agent_names) @pytest.mark.skipif(not torch.cuda.device_count(), reason="No cuda device") class TestConcurrentEnvs: """Concurrent parallel envs on multiple procs can interfere.""" class Policy(TensorDictModuleBase): in_keys = [] out_keys = ["action"] def __init__(self, spec): super().__init__() self.spec = spec def forward(self, tensordict): tensordict.set("action", self.spec["action"].zero() + 1) return tensordict @staticmethod def main_penv(j, q=None): device = "cpu" if not torch.cuda.device_count() else "cuda:0" n_workers = 1 env_p = ParallelEnv( n_workers, [ lambda i=i: CountingEnv(i, device=device) for i in range(j, j + n_workers) ], ) env_s = SerialEnv( n_workers, [ lambda i=i: CountingEnv(i, device=device) for i in range(j, j + n_workers) ], ) spec = env_p.action_spec policy = TestConcurrentEnvs.Policy(CompositeSpec(action=spec.to(device))) N = 10 r_p = [] r_s = [] for _ in range(N): with torch.no_grad(): r_p.append(env_s.rollout(100, break_when_any_done=False, policy=policy)) r_s.append(env_p.rollout(100, break_when_any_done=False, policy=policy)) td_equals = torch.stack(r_p) == torch.stack(r_s) if td_equals.all(): if q is not None: q.put(("passed", j)) else: pass else: if q is not None: s = "" for key, item in td_equals.items(True, True): if not item.all(): s = s + f"\t{key}" q.put((f"failed: {s}", j)) else: raise RuntimeError() @staticmethod def main_collector(j, q=None): device = "cpu" if not torch.cuda.device_count() else "cuda:0" N = 10 n_workers = 1 make_envs = [ lambda i=i: CountingEnv(i, device=device) for i in range(j, j + n_workers) ] spec = make_envs[0]().action_spec policy = TestConcurrentEnvs.Policy(CompositeSpec(action=spec)) collector = MultiSyncDataCollector( make_envs, policy, frames_per_batch=n_workers * 100, total_frames=N * n_workers * 100, storing_device=device, device=device, ) single_collectors = [ SyncDataCollector( make_envs[i](), policy, frames_per_batch=n_workers * 100, total_frames=N * n_workers * 100, storing_device=device, device=device, ) for i in range(n_workers) ] iter_collector = iter(collector) iter_single_collectors = [iter(sc) for sc in single_collectors] r_p = [] r_s = [] for _ in range(N): with torch.no_grad(): r_p.append(next(iter_collector).clone()) r_s.append(torch.cat([next(sc) for sc in iter_single_collectors])) collector.shutdown() for sc in single_collectors: sc.shutdown() del collector del single_collectors r_p = torch.stack(r_p).contiguous() r_s = torch.stack(r_s).contiguous() td_equals = r_p == r_s if td_equals.all(): if q is not None: q.put(("passed", j)) else: pass else: if q is not None: s = "" for key, item in td_equals.items(True, True): if not item.all(): s = s + f"\t{key}" q.put((f"failed: {s}", j)) else: raise RuntimeError() @pytest.mark.parametrize("nproc", [3, 1]) def test_mp_concurrent(self, nproc): if nproc == 1: self.main_penv(3) self.main_penv(6) self.main_penv(9) else: from torch import multiprocessing as mp q = mp.Queue(3) ps = [] try: for k in range(3, 10, 3): p = mp.Process(target=type(self).main_penv, args=(k, q)) ps.append(p) p.start() for _ in range(3): msg, j = q.get(timeout=100) assert msg == "passed", j finally: for p in ps: p.join() @pytest.mark.parametrize("nproc", [3, 1]) def test_mp_collector(self, nproc): if nproc == 1: self.main_collector(3) self.main_collector(6) self.main_collector(9) else: from torch import multiprocessing as mp q = mp.Queue(3) ps = [] try: for j in range(3, 10, 3): p = mp.Process(target=type(self).main_collector, args=(j, q)) ps.append(p) p.start() for _ in range(3): msg, j = q.get(timeout=100) assert msg == "passed", j finally: for p in ps: p.join(timeout=2) class TestNestedSpecs: @pytest.mark.parametrize("envclass", ["CountingEnv", "NestedCountingEnv"]) def test_nested_env(self, envclass): if envclass == "CountingEnv": env = CountingEnv() elif envclass == "NestedCountingEnv": env = NestedCountingEnv() else: raise NotImplementedError reset = env.reset() assert not isinstance(env.reward_spec, CompositeSpec) for done_key in env.done_keys: assert ( env.full_done_spec[done_key] == env.output_spec[("full_done_spec", *_unravel_key_to_tuple(done_key))] ) assert ( env.reward_spec == env.output_spec[ ("full_reward_spec", *_unravel_key_to_tuple(env.reward_key)) ] ) if envclass == "NestedCountingEnv": for done_key in env.done_keys: assert done_key in (("data", "done"), ("data", "terminated")) assert env.reward_key == ("data", "reward") assert ("data", "done") in reset.keys(True) assert ("data", "states") in reset.keys(True) assert ("data", "reward") not in reset.keys(True) for done_key in env.done_keys: assert done_key in reset.keys(True) assert env.reward_key not in reset.keys(True) next_state = env.rand_step() if envclass == "NestedCountingEnv": assert ("next", "data", "done") in next_state.keys(True) assert ("next", "data", "states") in next_state.keys(True) assert ("next", "data", "reward") in next_state.keys(True) for done_key in env.done_keys: assert ("next", *_unravel_key_to_tuple(done_key)) in next_state.keys(True) assert ("next", *_unravel_key_to_tuple(env.reward_key)) in next_state.keys(True) @pytest.mark.parametrize("batch_size", [(), (32,), (32, 1)]) def test_nested_env_dims(self, batch_size, nested_dim=5, rollout_length=3): env = NestedCountingEnv(batch_size=batch_size, nested_dim=nested_dim) td_reset = env.reset() assert td_reset.batch_size == batch_size assert td_reset["data"].batch_size == (*batch_size, nested_dim) td = env.rand_action() assert td.batch_size == batch_size assert td["data"].batch_size == (*batch_size, nested_dim) td = env.rand_action(td_reset) assert td.batch_size == batch_size assert td["data"].batch_size == (*batch_size, nested_dim) td = env.rand_step(td) assert td.batch_size == batch_size assert td["data"].batch_size == (*batch_size, nested_dim) assert td["next", "data"].batch_size == (*batch_size, nested_dim) td = env.rand_step() assert td.batch_size == batch_size assert td["data"].batch_size == (*batch_size, nested_dim) assert td["next", "data"].batch_size == (*batch_size, nested_dim) td = env.rand_step(td_reset) assert td.batch_size == batch_size assert td["data"].batch_size == (*batch_size, nested_dim) assert td["next", "data"].batch_size == (*batch_size, nested_dim) td = env.rollout(rollout_length) assert td.batch_size == (*batch_size, rollout_length) assert td["data"].batch_size == (*batch_size, rollout_length, nested_dim) assert td["next", "data"].batch_size == ( *batch_size, rollout_length, nested_dim, ) policy = CountingEnvCountPolicy(env.action_spec, env.action_key) td = env.rollout(rollout_length, policy) assert td.batch_size == (*batch_size, rollout_length) assert td["data"].batch_size == (*batch_size, rollout_length, nested_dim) assert td["next", "data"].batch_size == ( *batch_size, rollout_length, nested_dim, ) @pytest.mark.parametrize("batch_size", [(), (32,), (32, 1)]) @pytest.mark.parametrize( "nest_done,has_root_done", [[False, False], [True, False], [True, True]] ) def test_nested_reset(self, nest_done, has_root_done, batch_size): env = NestedCountingEnv( nest_done=nest_done, has_root_done=has_root_done, batch_size=batch_size ) for reset_key, done_keys in zip(env.reset_keys, env.done_keys_groups): if isinstance(reset_key, str): for done_key in done_keys: assert isinstance(done_key, str) else: for done_key in done_keys: assert done_key[:-1] == reset_key[:-1] env.rollout(100) env.rollout(100, break_when_any_done=False) class TestHeteroEnvs: @pytest.mark.parametrize("batch_size", [(), (32,), (1, 2)]) def test_reset(self, batch_size): env = HeterogeneousCountingEnv(batch_size=batch_size) env.reset() @pytest.mark.parametrize("batch_size", [(), (32,), (1, 2)]) def test_rand_step(self, batch_size): env = HeterogeneousCountingEnv(batch_size=batch_size) td = env.reset() assert (td["lazy"][..., 0]["tensor_0"] == 0).all() td = env.rand_step() assert (td["next", "lazy"][..., 0]["tensor_0"] == 1).all() td = env.rand_step() assert (td["next", "lazy"][..., 1]["tensor_1"] == 2).all() @pytest.mark.parametrize("batch_size", [(), (2,), (2, 1)]) @pytest.mark.parametrize("rollout_steps", [1, 2, 5]) def test_rollout(self, batch_size, rollout_steps, n_lazy_dim=3): env = HeterogeneousCountingEnv(batch_size=batch_size) td = env.rollout(rollout_steps, return_contiguous=False) td = dense_stack_tds(td) assert isinstance(td, TensorDict) assert td.batch_size == (*batch_size, rollout_steps) assert isinstance(td["lazy"], LazyStackedTensorDict) assert td["lazy"].shape == (*batch_size, rollout_steps, n_lazy_dim) assert td["lazy"].stack_dim == len(td["lazy"].batch_size) - 1 assert (td[..., -1]["next", "state"] == rollout_steps).all() assert (td[..., -1]["next", "lazy", "camera"] == rollout_steps).all() assert ( td["lazy"][(0,) * len(batch_size)][..., 0]["tensor_0"].squeeze(-1) == torch.arange(rollout_steps) ).all() @pytest.mark.parametrize("batch_size", [(), (2,), (2, 1)]) @pytest.mark.parametrize("rollout_steps", [1, 2, 5]) @pytest.mark.parametrize("count", [True, False]) def test_rollout_policy(self, batch_size, rollout_steps, count): env = HeterogeneousCountingEnv(batch_size=batch_size) policy = HeterogeneousCountingEnvPolicy( env.input_spec["full_action_spec"], count=count ) td = env.rollout(rollout_steps, policy=policy, return_contiguous=False) td = dense_stack_tds(td) for i in range(env.n_nested_dim): if count: agent_obs = td["lazy"][(0,) * len(batch_size)][..., i][f"tensor_{i}"] for _ in range(i + 1): agent_obs = agent_obs.mean(-1) assert (agent_obs == torch.arange(rollout_steps)).all() assert (td["lazy"][..., i]["action"] == 1).all() else: assert (td["lazy"][..., i]["action"] == 0).all() @pytest.mark.parametrize("batch_size", [(1, 2)]) @pytest.mark.parametrize("env_type", ["serial", "parallel"]) @pytest.mark.parametrize("break_when_any_done", [False, True]) def test_vec_env( self, batch_size, env_type, break_when_any_done, rollout_steps=4, n_workers=2 ): env_fun = lambda: HeterogeneousCountingEnv(batch_size=batch_size) if env_type == "serial": vec_env = SerialEnv(n_workers, env_fun) else: vec_env = ParallelEnv(n_workers, env_fun) vec_batch_size = (n_workers,) + batch_size # check_env_specs(vec_env, return_contiguous=False) policy = HeterogeneousCountingEnvPolicy(vec_env.input_spec["full_action_spec"]) vec_env.reset() td = vec_env.rollout( rollout_steps, policy=policy, return_contiguous=False, break_when_any_done=break_when_any_done, ) td = dense_stack_tds(td) for i in range(env_fun().n_nested_dim): agent_obs = td["lazy"][(0,) * len(vec_batch_size)][..., i][f"tensor_{i}"] for _ in range(i + 1): agent_obs = agent_obs.mean(-1) assert (agent_obs == torch.arange(rollout_steps)).all() assert (td["lazy"][..., i]["action"] == 1).all() @pytest.mark.parametrize("seed", [0]) class TestMultiKeyEnvs: @pytest.mark.parametrize("batch_size", [(), (2,), (2, 1)]) @pytest.mark.parametrize("rollout_steps", [1, 5]) @pytest.mark.parametrize("max_steps", [2, 5]) def test_rollout(self, batch_size, rollout_steps, max_steps, seed): env = MultiKeyCountingEnv(batch_size=batch_size, max_steps=max_steps) policy = MultiKeyCountingEnvPolicy(full_action_spec=env.action_spec) td = env.rollout(rollout_steps, policy=policy) torch.manual_seed(seed) check_rollout_consistency_multikey_env(td, max_steps=max_steps) @pytest.mark.parametrize("batch_size", [(), (2,), (2, 1)]) @pytest.mark.parametrize("rollout_steps", [5]) @pytest.mark.parametrize("env_type", ["serial", "parallel"]) @pytest.mark.parametrize("max_steps", [2, 5]) def test_parallel( self, batch_size, rollout_steps, env_type, max_steps, seed, maybe_fork_ParallelEnv, n_workers=2, ): torch.manual_seed(seed) env_fun = lambda: MultiKeyCountingEnv( batch_size=batch_size, max_steps=max_steps ) if env_type == "serial": vec_env = SerialEnv(n_workers, env_fun) else: vec_env = maybe_fork_ParallelEnv(n_workers, env_fun) # check_env_specs(vec_env) policy = MultiKeyCountingEnvPolicy( full_action_spec=vec_env.input_spec["full_action_spec"] ) vec_env.reset() td = vec_env.rollout( rollout_steps, policy=policy, ) check_rollout_consistency_multikey_env(td, max_steps=max_steps) @pytest.mark.parametrize( "envclass", [ ContinuousActionConvMockEnv, ContinuousActionConvMockEnvNumpy, ContinuousActionVecMockEnv, CountingBatchedEnv, CountingEnv, DiscreteActionConvMockEnv, DiscreteActionConvMockEnvNumpy, DiscreteActionVecMockEnv, partial( DummyModelBasedEnvBase, world_model=TestModelBasedEnvBase.world_model() ), MockBatchedLockedEnv, MockBatchedUnLockedEnv, MockSerialEnv, NestedCountingEnv, HeterogeneousCountingEnv, MultiKeyCountingEnv, ], ) def test_mocking_envs(envclass): env = envclass() env.set_seed(100) reset = env.reset() _ = env.rand_step(reset) check_env_specs(env, seed=100, return_contiguous=False) class TestTerminatedOrTruncated: @pytest.mark.parametrize("done_key", ["done", "terminated", "truncated"]) def test_root_prevail(self, done_key): _spec = DiscreteTensorSpec(2, shape=(), dtype=torch.bool) spec = CompositeSpec({done_key: _spec, ("agent", done_key): _spec}) data = TensorDict({done_key: [False], ("agent", done_key): [True, False]}, []) assert not _terminated_or_truncated(data) assert not _terminated_or_truncated(data, full_done_spec=spec) data = TensorDict({done_key: [True], ("agent", done_key): [True, False]}, []) assert _terminated_or_truncated(data) assert _terminated_or_truncated(data, full_done_spec=spec) def test_terminated_or_truncated_nospec(self): data = TensorDict({"done": torch.zeros(2, 1, dtype=torch.bool)}, [2]) assert not _terminated_or_truncated(data, write_full_false=True) assert data["_reset"].shape == (2,) assert not _terminated_or_truncated(data, write_full_false=False) assert data.get("_reset", None) is None data = TensorDict( { ("agent", "done"): torch.zeros(2, 1, dtype=torch.bool), ("nested", "done"): torch.ones(2, 1, dtype=torch.bool), }, [2], ) assert _terminated_or_truncated(data) assert data["agent", "_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) data = TensorDict( { "done": torch.zeros(2, 1, dtype=torch.bool), ("nested", "done"): torch.zeros(2, 1, dtype=torch.bool), }, [2], ) assert not _terminated_or_truncated(data, write_full_false=False) assert data.get("_reset", None) is None assert data.get(("nested", "_reset"), None) is None assert not _terminated_or_truncated(data, write_full_false=True) assert data["_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) data = TensorDict( { "terminated": torch.zeros(2, 1, dtype=torch.bool), "truncated": torch.ones(2, 1, dtype=torch.bool), ("nested", "terminated"): torch.zeros(2, 1, dtype=torch.bool), }, [2], ) assert _terminated_or_truncated(data, write_full_false=False) assert data["_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) assert data["_reset"].all() assert not data["nested", "_reset"].any() def test_terminated_or_truncated_spec(self): spec = CompositeSpec( done=DiscreteTensorSpec(2, shape=(2, 1), dtype=torch.bool), shape=[ 2, ], ) data = TensorDict({"done": torch.zeros(2, 1, dtype=torch.bool)}, [2]) assert not _terminated_or_truncated( data, write_full_false=True, full_done_spec=spec ) assert data["_reset"].shape == (2,) assert not _terminated_or_truncated( data, write_full_false=False, full_done_spec=spec ) assert data.get("_reset", None) is None spec = CompositeSpec( { ("agent", "done"): DiscreteTensorSpec( 2, shape=(2, 1), dtype=torch.bool ), ("nested", "done"): DiscreteTensorSpec( 2, shape=(2, 1), dtype=torch.bool ), }, shape=[ 2, ], ) data = TensorDict( { ("agent", "done"): torch.zeros(2, 1, dtype=torch.bool), ("nested", "done"): torch.ones(2, 1, dtype=torch.bool), }, [2], ) assert _terminated_or_truncated(data, full_done_spec=spec) assert data["agent", "_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) data = TensorDict( { ("agent", "done"): torch.zeros(2, 1, dtype=torch.bool), ("nested", "done"): torch.zeros(2, 1, dtype=torch.bool), }, [2], ) assert not _terminated_or_truncated( data, write_full_false=False, full_done_spec=spec ) assert data.get(("agent", "_reset"), None) is None assert data.get(("nested", "_reset"), None) is None assert not _terminated_or_truncated( data, write_full_false=True, full_done_spec=spec ) assert data["agent", "_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) spec = CompositeSpec( { "truncated": DiscreteTensorSpec(2, shape=(2, 1), dtype=torch.bool), "terminated": DiscreteTensorSpec(2, shape=(2, 1), dtype=torch.bool), ("nested", "terminated"): DiscreteTensorSpec( 2, shape=(2, 1), dtype=torch.bool ), }, shape=[2], ) data = TensorDict( { "terminated": torch.zeros(2, 1, dtype=torch.bool), "truncated": torch.ones(2, 1, dtype=torch.bool), ("nested", "terminated"): torch.zeros(2, 1, dtype=torch.bool), }, [2], ) assert _terminated_or_truncated( data, write_full_false=False, full_done_spec=spec ) assert data["_reset"].shape == (2,) assert data["nested", "_reset"].shape == (2,) assert data["_reset"].all() assert not data["nested", "_reset"].any() class TestLibThreading: @pytest.mark.skipif( IS_OSX, reason="setting different threads across workers can randomly fail on OSX.", ) def test_num_threads(self): from torchrl.envs import batched_envs _run_worker_pipe_shared_mem_save = batched_envs._run_worker_pipe_shared_mem batched_envs._run_worker_pipe_shared_mem = decorate_thread_sub_func( batched_envs._run_worker_pipe_shared_mem, num_threads=3 ) num_threads = torch.get_num_threads() try: env = ParallelEnv( 2, ContinuousActionVecMockEnv, num_sub_threads=3, num_threads=7 ) # We could test that the number of threads isn't changed until we start the procs. # Even though it's unlikely that we have 7 threads, we still disable this for safety # assert torch.get_num_threads() != 7 env.rollout(3) assert torch.get_num_threads() == 7 finally: # reset vals batched_envs._run_worker_pipe_shared_mem = _run_worker_pipe_shared_mem_save torch.set_num_threads(num_threads) @pytest.mark.skipif( IS_OSX, reason="setting different threads across workers can randomly fail on OSX.", ) def test_auto_num_threads(self, maybe_fork_ParallelEnv): init_threads = torch.get_num_threads() try: env3 = maybe_fork_ParallelEnv(3, ContinuousActionVecMockEnv) env3.rollout(2) assert torch.get_num_threads() == max(1, init_threads - 3) env2 = maybe_fork_ParallelEnv(2, ContinuousActionVecMockEnv) env2.rollout(2) assert torch.get_num_threads() == max(1, init_threads - 5) env2.close() del env2 gc.collect() assert torch.get_num_threads() == max(1, init_threads - 3) env3.close() del env3 gc.collect() assert torch.get_num_threads() == init_threads finally: torch.set_num_threads(init_threads) def test_run_type_checks(): env = ContinuousActionVecMockEnv() env._run_type_checks = False check_env_specs(env) env._run_type_checks = True check_env_specs(env) env.output_spec.unlock_() # check type check on done env.output_spec["full_done_spec", "done"].dtype = torch.int with pytest.raises(TypeError, match="expected done.dtype to"): check_env_specs(env) env.output_spec["full_done_spec", "done"].dtype = torch.bool # check type check on reward env.output_spec["full_reward_spec", "reward"].dtype = torch.int with pytest.raises(TypeError, match="expected"): check_env_specs(env) env.output_spec["full_reward_spec", "reward"].dtype = torch.float # check type check on obs env.output_spec["full_observation_spec", "observation"].dtype = torch.float16 with pytest.raises(TypeError): check_env_specs(env) @pytest.mark.skipif(not torch.cuda.device_count(), reason="No cuda device found.") @pytest.mark.parametrize("break_when_any_done", [True, False]) def test_auto_cast_to_device(break_when_any_done): env = ContinuousActionVecMockEnv(device="cpu") policy = Actor( nn.Linear( env.observation_spec["observation"].shape[-1], env.action_spec.shape[-1], device="cuda:0", ), in_keys=["observation"], ) with pytest.raises(RuntimeError): env.rollout(10, policy) torch.manual_seed(0) env.set_seed(0) rollout0 = env.rollout( 100, policy, auto_cast_to_device=True, break_when_any_done=break_when_any_done ) torch.manual_seed(0) env.set_seed(0) rollout1 = env.rollout( 100, policy.cpu(), auto_cast_to_device=False, break_when_any_done=break_when_any_done, ) assert_allclose_td(rollout0, rollout1) @pytest.mark.parametrize("device", get_default_devices()) def test_backprop(device, maybe_fork_ParallelEnv): # Tests that backprop through a series of single envs and through a serial env are identical # Also tests that no backprop can be achieved with parallel env. class DifferentiableEnv(EnvBase): def __init__(self, device): super().__init__(device=device) self.observation_spec = CompositeSpec( observation=UnboundedContinuousTensorSpec(3, device=device), device=device, ) self.action_spec = CompositeSpec( action=UnboundedContinuousTensorSpec(3, device=device), device=device ) self.reward_spec = CompositeSpec( reward=UnboundedContinuousTensorSpec(1, device=device), device=device ) self.seed = 0 def _set_seed(self, seed): self.seed = seed return seed def _reset(self, tensordict): td = self.observation_spec.zero().update(self.done_spec.zero()) td["observation"] = ( td["observation"].clone() + self.seed % 10 ).requires_grad_() return td def _step(self, tensordict): action = tensordict.get("action") obs = (tensordict.get("observation") + action) / action.norm() return TensorDict( { "reward": action.sum().unsqueeze(0), **self.full_done_spec.zero(), "observation": obs, } ) torch.manual_seed(0) policy = Actor(torch.nn.Linear(3, 3, device=device)) env0 = DifferentiableEnv(device=device) seed = env0.set_seed(0) env1 = DifferentiableEnv(device=device) env1.set_seed(seed) r0 = env0.rollout(10, policy) r1 = env1.rollout(10, policy) r = torch.stack([r0, r1]) g = torch.autograd.grad(r["next", "reward"].sum(), policy.parameters()) def make_env(seed, device=device): env = DifferentiableEnv(device=device) env.set_seed(seed) return env serial_env = SerialEnv( 2, [functools.partial(make_env, seed=0), functools.partial(make_env, seed=seed)], device=device, ) r_serial = serial_env.rollout(10, policy) g_serial = torch.autograd.grad( r_serial["next", "reward"].sum(), policy.parameters() ) torch.testing.assert_close(g, g_serial) p_env = maybe_fork_ParallelEnv( 2, [functools.partial(make_env, seed=0), functools.partial(make_env, seed=seed)], device=device, ) try: r_parallel = p_env.rollout(10, policy) assert not r_parallel.exclude("action").requires_grad finally: p_env.close() @pytest.mark.skipif(not _has_gym, reason="Gym required for this test") def test_non_td_policy(): env = GymEnv("CartPole-v1", categorical_action_encoding=True) class ArgMaxModule(nn.Module): def forward(self, values): return values.argmax(-1) policy = nn.Sequential( nn.Linear(env.observation_spec["observation"].shape[-1], env.action_spec.n), ArgMaxModule(), ) env.rollout(10, policy) env = SerialEnv(2, lambda: GymEnv("CartPole-v1", categorical_action_encoding=True)) env.rollout(10, policy) @pytest.mark.skipif(IS_WIN, reason="fork not available on windows 10") def test_parallel_another_ctx(): from torch import multiprocessing as mp sm = mp.get_start_method() if sm == "spawn": other_sm = "fork" else: other_sm = "spawn" env = ParallelEnv(2, ContinuousActionVecMockEnv, mp_start_method=other_sm) try: assert env.rollout(3) is not None assert env._workers[0]._start_method == other_sm finally: try: env.close() del env except RuntimeError: pass if __name__ == "__main__": args, unknown = argparse.ArgumentParser().parse_known_args() pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)