-
Notifications
You must be signed in to change notification settings - Fork 23
/
smo.py
286 lines (255 loc) · 10.1 KB
/
smo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# encoding:utf-8
"""
@author: zzqboy
@time: 2017/1/2 21:25
"""
from numpy import *
import matplotlib.pyplot as plt
from matplotlib.patches import Circle
from matplotlib import animation
def loadDataSet(fileName):
# 加载数据
dataMat = [];
labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(float(lineArr[2]))
return dataMat, labelMat
def clipAlpha(aj, H, L):
# 保持alpha 在 [0, C]之间
if aj > H:
aj = H
if L > aj:
aj = L
return aj
def kernelTrans(X, A, kTup):
# 核函数
m, n = shape(X)
K = mat(zeros((m, 1)))
if kTup[0] == 'lin':
K = X * A.T # linear kernel
elif kTup[0] == 'rbf':
for j in range(m):
deltaRow = X[j, :] - A
K[j] = deltaRow * deltaRow.T
K = exp(K / (-1 * kTup[1] ** 2)) # divide in NumPy is element-wise not matrix like Matlab
else:
raise NameError('Houston We Have a Problem -- \
That Kernel is not recognized')
return K
def calcWs(alphas, dataArr, classLabels):
# 计算 W
X = mat(dataArr);
labelMat = mat(classLabels).transpose()
m, n = shape(X)
w = zeros((n, 1))
for i in range(m):
w += multiply(alphas[i] * labelMat[i], X[i, :].T)
return w
def calcEk(oS, k):
# 计算误差 E
fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
class optStruct:
def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
self.X = dataMatIn
self.labelMat = classLabels
self.C = C
self.tol = toler
self.m = shape(dataMatIn)[0]
self.alphas = mat(zeros((self.m, 1)))
self.b = 0
self.eCache = mat(zeros((self.m, 2))) # first column is valid flag
self.K = mat(zeros((self.m, self.m)))
for i in range(self.m):
self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej
# 选择第二个alpha
maxK = -1;
maxDeltaE = 0;
Ej = 0
oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E
validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
if (len(validEcacheList)) > 1:
for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E
if k == i: continue # don't calc for i, waste of time
Ek = calcEk(oS, k)
deltaE = abs(Ei - Ek)
if (deltaE > maxDeltaE):
maxK = k;
maxDeltaE = deltaE;
Ej = Ek
return maxK, Ej
else: # in this case (first time around) we don't have any valid eCache values
j = selectJrand(i, oS.m)
Ej = calcEk(oS, j)
return j, Ej
def selectJrand(i,m):
j=i #we want to select any J not equal to i
while (j==i):
j = int(random.uniform(0,m))
return j
def updateEk(oS, k): # after any alpha has changed update the new value in the cache
Ek = calcEk(oS, k)
oS.eCache[k] = [1, Ek]
def innerL(i, oS, choose_temp):
Ei = calcEk(oS, i)
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
(oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
j, Ej = selectJ(i, oS, Ei) # this has been changed from selectJrand
alphaIold = oS.alphas[i].copy();
alphaJold = oS.alphas[j].copy();
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H: print "L==H"; return 0
eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] # changed for kernel
if eta >= 0: print "eta>=0"; return 0
choose_temp.append(j) # 记录选择的第二个点
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
updateEk(oS, j) # added this for the Ecache
if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j]) # update i by the same amount as j
updateEk(oS, i) # added this for the Ecache #the update is in the oppostie direction
b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (
oS.alphas[j] - alphaJold) * oS.K[i, j]
b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (
oS.alphas[j] - alphaJold) * oS.K[j, j]
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
oS.b = b2
else:
oS.b = (b1 + b2) / 2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # full Platt SMO
choose_all_x = [] # 用来记录每次选择的样本
all_E = [] # 记录变化的误差
all_alpha, all_b = [], [] # 记录变化的alpha和b
oS = optStruct(mat(dataMatIn), mat(classLabels).transpose(), C, toler, kTup)
iter = 0
entireSet = True;
alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
alphaPairsChanged = 0
if entireSet: # go over all
for i in range(oS.m):
choose_temp = [i]
alphaPairsChanged += innerL(i, oS, choose_temp)
choose_all_x.append(choose_temp)
all_alpha.append(oS.alphas)
all_b.append(oS.b)
print "fullSet, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
iter += 1
else: # go over non-bound (railed) alphas
nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
for i in nonBoundIs:
choose_temp = [i]
alphaPairsChanged += innerL(i, oS, choose_temp)
choose_all_x.append(choose_temp)
all_alpha.append(oS.alphas)
all_b.append(oS.b)
print "non-bound, iter: %d i:%d, pairs changed %d" % (iter, i, alphaPairsChanged)
iter += 1
if entireSet:
entireSet = False # toggle entire set loop
elif (alphaPairsChanged == 0):
entireSet = True
print "iteration number: %d" % iter
return oS.b, oS.alphas, choose_all_x, all_alpha, all_b
def compute_all_e(dataMatrix, labelMat, alphas, b, m):
# 计算总误差方法,实际要更新的只是 alpha , b
e = 0
for i in range(m):
fXi = float(multiply(alphas, labelMat).T * dataMatrix * dataMatrix[i, :].T) + b # 预测的类别
Ei = fXi - float(labelMat[i])
e += Ei
return e
def draw_svm_learning():
### 开始拟合
dataArr, labelArr = loadDataSet('testSet.txt')
dataMatrix, labelMat = mat(dataArr), mat(labelArr).transpose()
b, alphas, choose_all_x, all_alpha, all_b = smoP(dataArr, labelArr, 0.6, 0.001, 40)
## 找到使得直线方程改变的两个点 alpha1 alpha2
change_index = [index for index, i in enumerate(choose_all_x) if len(i) == 2]
change_x, change_alpha, change_b = [], [], []
for i in change_index:
change_x.append(choose_all_x[i])
change_alpha.append(all_alpha[i])
change_b.append(all_b[i])
print len(choose_all_x)
print len(change_x)
### 下面开始画图
fig = plt.figure(121)
ax = plt.axes(xlim=(-2, 12), ylim=(-8, 6))
line, = ax.plot([], [])
# 标签为-1的点
xcord0 = [dataArr[i][0] for i in range(len(labelArr)) if labelArr[i] == -1]
ycord0 = [dataArr[i][1] for i in range(len(labelArr)) if labelArr[i] == -1]
# 标签为1的点
xcord1 = [dataArr[i][0] for i in range(len(labelArr)) if labelArr[i] == 1]
ycord1 = [dataArr[i][1] for i in range(len(labelArr)) if labelArr[i] == 1]
# 更新每次的超平面方程
def animate(time):
# time 代表迭代次数,也是帧数
label = u'Learning itertime {0}'.format(time)
ax.set_xlabel(label)
a, b = change_alpha[time], change_b[time]
w = calcWs(a, dataArr, labelArr)
choose_x = change_x[time]
# 画出每次优化的两个点和其他数据点
for i in range(len(labelArr)):
xPt = dataArr[i][0]
yPt = dataArr[i][1]
label = labelArr[i]
if i in choose_x:
continue
if (label == -1):
ax.scatter(xPt, yPt, marker='o', s=60, linewidths=0.01)
else:
ax.scatter(xcord1, ycord1, marker='o', s=90, c='red',linewidths=0.1)
for i in choose_x:
ax.scatter(dataArr[i][0], dataArr[i][1], marker='o', s=90, c='cyan',linewidths=0.1)
# 画出直线
w0 = w[0][0]
w1 = w[1][0]
b = float(b)
x = arange(-2.0, 12.0, 0.1)
y = (-w0 * x - b) / w1
line.set_data(x, y)
plt.title(u'SVM (zzqboy.com)')
return line, ax
anim = animation.FuncAnimation(fig, animate, frames=len(change_x), interval=1)
# plt.show()
anim.save('svm.gif', fps=2, writer='imagemagick')
def draw_e():
### 开始拟合
dataArr, labelArr = loadDataSet('testSet.txt')
m = len(dataArr)
dataMatrix, labelMat = mat(dataArr), mat(labelArr).transpose()
b, alphas, choose_all_x, all_alpha, all_b = smoP(dataArr, labelArr, 0.6, 0.001, 40)
### 下面开始画图
fig = plt.figure()
iter_time = len(choose_all_x)
ax = plt.axes()
ax.set_ylabel(u'error value')
ax.set_xlabel(u'iter time')
ax.set_title(u'svm (zzqboy.com)')
y = []
for i in range(iter_time):
e = compute_all_e(dataMatrix, labelMat, all_alpha[i], all_b[i], m)
y.append(e)
ax.plot(range(iter_time), y)
plt.show()
if __name__ == '__main__':
# draw_svm_learning()
draw_e()