import torch # torch.autograd.set_detect_anomaly(True) import torch.nn as nn import torch.nn.functional as F import numpy as np # Misc img2mse = lambda x, y : torch.mean((x - y) ** 2) mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.])) to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8) # Positional encoding (section 5.1) class Embedder: def __init__(self, **kwargs): self.kwargs = kwargs self.create_embedding_fn() def create_embedding_fn(self): embed_fns = [] d = self.kwargs['input_dims'] out_dim = 0 if self.kwargs['include_input']: embed_fns.append(lambda x : x) out_dim += d max_freq = self.kwargs['max_freq_log2'] N_freqs = self.kwargs['num_freqs'] if self.kwargs['log_sampling']: freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs) else: freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs) for freq in freq_bands: for p_fn in self.kwargs['periodic_fns']: embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq)) out_dim += d self.embed_fns = embed_fns self.out_dim = out_dim def embed(self, inputs): return torch.cat([fn(inputs) for fn in self.embed_fns], -1) def get_embedder(multires, i=0): if i == -1: return nn.Identity(), 3 embed_kwargs = { 'include_input' : True, 'input_dims' : 3, 'max_freq_log2' : multires-1, 'num_freqs' : multires, 'log_sampling' : True, 'periodic_fns' : [torch.sin, torch.cos], } embedder_obj = Embedder(**embed_kwargs) embed = lambda x, eo=embedder_obj : eo.embed(x) return embed, embedder_obj.out_dim # Model class NeRF(nn.Module): def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False): """ """ super(NeRF, self).__init__() self.D = D self.W = W self.input_ch = input_ch self.input_ch_views = input_ch_views self.skips = skips self.use_viewdirs = use_viewdirs self.pts_linears = nn.ModuleList( [nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)]) ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105) self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)]) ### Implementation according to the paper # self.views_linears = nn.ModuleList( # [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)]) if use_viewdirs: self.feature_linear = nn.Linear(W, W) self.alpha_linear = nn.Linear(W, 1) self.rgb_linear = nn.Linear(W//2, 3) else: self.output_linear = nn.Linear(W, output_ch) def forward(self, x): input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1) h = input_pts for i, l in enumerate(self.pts_linears): h = self.pts_linears[i](h) h = F.relu(h) if i in self.skips: h = torch.cat([input_pts, h], -1) if self.use_viewdirs: alpha = self.alpha_linear(h) feature = self.feature_linear(h) h = torch.cat([feature, input_views], -1) for i, l in enumerate(self.views_linears): h = self.views_linears[i](h) h = F.relu(h) rgb = self.rgb_linear(h) outputs = torch.cat([rgb, alpha], -1) else: outputs = self.output_linear(h) return outputs def load_weights_from_keras(self, weights): assert self.use_viewdirs, "Not implemented if use_viewdirs=False" # Load pts_linears for i in range(self.D): idx_pts_linears = 2 * i self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears])) self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1])) # Load feature_linear idx_feature_linear = 2 * self.D self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear])) self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1])) # Load views_linears idx_views_linears = 2 * self.D + 2 self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears])) self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1])) # Load rgb_linear idx_rbg_linear = 2 * self.D + 4 self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear])) self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1])) # Load alpha_linear idx_alpha_linear = 2 * self.D + 6 self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear])) self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1])) # Ray helpers def get_rays(H, W, K, c2w): i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij' i = i.t() j = j.t() dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1) # Rotate ray directions from camera frame to the world frame rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs] # Translate camera frame's origin to the world frame. It is the origin of all rays. rays_o = c2w[:3,-1].expand(rays_d.shape) return rays_o, rays_d def get_rays_np(H, W, K, c2w): i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1) # Rotate ray directions from camera frame to the world frame rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs] # Translate camera frame's origin to the world frame. It is the origin of all rays. rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d)) return rays_o, rays_d def ndc_rays(H, W, focal, near, rays_o, rays_d): # Shift ray origins to near plane t = -(near + rays_o[...,2]) / rays_d[...,2] rays_o = rays_o + t[...,None] * rays_d # Projection o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2] o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2] o2 = 1. + 2. * near / rays_o[...,2] d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2]) d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2]) d2 = -2. * near / rays_o[...,2] rays_o = torch.stack([o0,o1,o2], -1) rays_d = torch.stack([d0,d1,d2], -1) return rays_o, rays_d # Hierarchical sampling (section 5.2) def sample_pdf(bins, weights, N_samples, det=False, pytest=False): # Get pdf weights = weights + 1e-5 # prevent nans pdf = weights / torch.sum(weights, -1, keepdim=True) cdf = torch.cumsum(pdf, -1) cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins)) # Take uniform samples if det: u = torch.linspace(0., 1., steps=N_samples) u = u.expand(list(cdf.shape[:-1]) + [N_samples]) else: u = torch.rand(list(cdf.shape[:-1]) + [N_samples]) # Pytest, overwrite u with numpy's fixed random numbers if pytest: np.random.seed(0) new_shape = list(cdf.shape[:-1]) + [N_samples] if det: u = np.linspace(0., 1., N_samples) u = np.broadcast_to(u, new_shape) else: u = np.random.rand(*new_shape) u = torch.Tensor(u) # Invert CDF u = u.contiguous() inds = torch.searchsorted(cdf, u, right=True) below = torch.max(torch.zeros_like(inds-1), inds-1) above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds) inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2) # cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2) # bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2) matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]] cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g) bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g) denom = (cdf_g[...,1]-cdf_g[...,0]) denom = torch.where(denom<1e-5, torch.ones_like(denom), denom) t = (u-cdf_g[...,0])/denom samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0]) return samples