-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path4.apex_distributed2.py
459 lines (374 loc) · 18 KB
/
4.apex_distributed2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from apex import amp
from apex.parallel import DistributedDataParallel # 其1,导入库函数 和apex相关,重要
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default='/raid/xianchaow/pytorch-distributed/data/cifar10', help='path to dataset')
parser.add_argument('-a',
'--arch',
metavar='ARCH',
default='resnet18',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')
parser.add_argument('-j',
'--workers',
default=4,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=10, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b',
'--batch-size',
default=3200,
type=int,
metavar='N',
help='mini-batch size (default: 6400), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr',
'--learning-rate',
default=0.1,
type=float,
metavar='LR',
help='initial learning rate',
dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training') # 其二,指定当前线程名
parser.add_argument('--wd',
'--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model')
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ')
def reduce_mean(tensor, nprocs):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= nprocs
return rt # 其三,调用torch中的distributed来管理loss和accuracy的all reduce
class data_prefetcher(): # TODO do not use this class, something is wrong!
def __init__(self, loader):
self.loader = iter(loader)
self.stream = torch.cuda.Stream()
# mean=[0.4915, 0.4823, 0.4468], std=[0.2470, 0.2435, 0.2616])
self.mean = torch.tensor([0.4915 * 255, 0.4823 * 255, 0.4468 * 255]).cuda().view(1, 3, 1, 1)
self.std = torch.tensor([0.2470 * 255, 0.2435 * 255, 0.2616 * 255]).cuda().view(1, 3, 1, 1)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.mean = self.mean.half()
# self.std = self.std.half()
self.preload()
def preload(self):
try:
self.next_input, self.next_target = next(self.loader)
except StopIteration:
self.next_input = None
self.next_target = None
return
# if record_stream() doesn't work, another option is to make sure device inputs are created
# on the main stream.
# self.next_input_gpu = torch.empty_like(self.next_input, device='cuda')
# self.next_target_gpu = torch.empty_like(self.next_target, device='cuda')
# Need to make sure the memory allocated for next_* is not still in use by the main stream
# at the time we start copying to next_*:
# self.stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream):
self.next_input = self.next_input.cuda(non_blocking=True)
self.next_target = self.next_target.cuda(non_blocking=True)
# more code for the alternative if record_stream() doesn't work:
# copy_ will record the use of the pinned source tensor in this side stream.
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
# self.next_input = self.next_input_gpu
# self.next_target = self.next_target_gpu
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.next_input = self.next_input.half()
# else:
self.next_input = self.next_input.float()
self.next_input = self.next_input.sub_(self.mean).div_(self.std)
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
input = self.next_input
target = self.next_target
if input is not None:
input.record_stream(torch.cuda.current_stream())
if target is not None:
target.record_stream(torch.cuda.current_stream())
self.preload()
return input, target
def main():
args = parser.parse_args()
args.nprocs = torch.cuda.device_count()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
main_worker(args.local_rank, args.nprocs, args) # 其四,根据传入的 local rank来调用main worker
def main_worker(local_rank, nprocs, args):
best_acc1 = .0
dist.init_process_group(backend='nccl') # 其五,初始化线程组,根据nccl通讯协议
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
torch.cuda.set_device(local_rank)# 重要,指定当前缺省的gpu = current working gpu
model.cuda() # 其六,根据local tank 把当前的模型放入local rank所在的gpu
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / nprocs)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
model, optimizer = amp.initialize(model, optimizer) # 其七,对模型和优化器进行封装,初始化。和apex相关
model = DistributedDataParallel(model) # 其八,对model进行数据并行化封装。和apex相关
#from apex import amp
#from apex.parallel import DistributedDataParallel
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.4915, 0.4823, 0.4468], std=[0.2470, 0.2435, 0.2616])
#train_dataset = datasets.ImageFolder(
# traindir,
# transforms.Compose([
# transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# normalize,
# ]))
train_dataset = datasets.CIFAR10(traindir, train=True, download=True, transform=transforms.Compose([transforms.ToTensor(), normalize]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) #其九,分布式数据采样器
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=2,
pin_memory=True,
sampler=train_sampler) # 使用分布式数据采样器,训练数据集合
val_dataset = datasets.CIFAR10(valdir, train=False, download=True, transform=transforms.Compose([transforms.ToTensor(), normalize]))
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=args.batch_size,
shuffle=False,
num_workers=2,
pin_memory=True,
sampler=val_sampler)
if args.evaluate:
validate(val_loader, model, criterion, local_rank, args)
return
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch) # 从而每次epoch的时候,数据重新被shuffle
val_sampler.set_epoch(epoch) # 其十,设置每次epoch开始的时候都重新shuf
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, local_rank, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, local_rank, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if args.local_rank == 0:
save_checkpoint(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.module.state_dict(),
'best_acc1': best_acc1,
}, is_best)
def train(train_loader, model, criterion, optimizer, epoch, local_rank, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), [batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
#prefetcher = data_prefetcher(train_loader)
#images, target = prefetcher.next()
#i = 0
#while images is not None:
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True) # 其十一,把mini batch放入当前local rank的gpu
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, local_rank, topk=(1, 5))
torch.distributed.barrier() # 同步点,其十二,同步点,为的是使用all reduce做准备
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs) #其十三,对loss和acc进行规约reduce
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
with amp.scale_loss(loss, optimizer) as scaled_loss: #其十四,对loss进行封装,混合精度反向传播。和apex相关
scaled_loss.backward()
optimizer.step()
#from apex import amp
#from apex.parallel import DistributedDataParallel
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
#i += 1
#images, target = prefetcher.next()
def validate(val_loader, model, criterion, local_rank, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
#prefetcher = data_prefetcher(val_loader)
#images, target = prefetcher.next()
#i = 0
#while images is not None:
for i, (images, target) in enumerate(val_loader):
# compute output
images = images.cuda(local_rank, non_blocking=True)
target = target.cuda(local_rank, non_blocking=True)
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, local_rank, topk=(1, 5))
torch.distributed.barrier()
reduced_loss = reduce_mean(loss, args.nprocs)
reduced_acc1 = reduce_mean(acc1, args.nprocs)
reduced_acc5 = reduce_mean(acc5, args.nprocs)
losses.update(reduced_loss.item(), images.size(0))
top1.update(reduced_acc1.item(), images.size(0))
top5.update(reduced_acc5.item(), images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
#i += 1
#images, target = prefetcher.next()
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
filename = state['arch'] + '.' + filename
torch.save(state, filename)
if is_best:
filename2 = state['arch'] + '.model_best.pth.tar'
shutil.copyfile(filename, filename2)
def save_checkpoint1(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, local_rank, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
#maxk = max(topk)
#batch_size = target.size(0)
#_, pred = output.topk(maxk, 1, True, True)
#pred = pred.t()
#correct = pred.eq(target.view(1, -1).expand_as(pred))
#res = []
#for k in topk:
# correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
# res.append(correct_k.mul_(100.0 / batch_size))
predy = torch.max(output, 1)[1].data.squeeze()
acc = (predy == target).sum().item()/float(target.size(0))
acc = torch.tensor(acc).cuda(local_rank)
res = []
res.append(acc)
res.append(acc)
return res
def accuracy2(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()