from sklearn.cluster import SpectralClustering import json import time import networkx as nx from collections import defaultdict, Counter from itertools import combinations import numpy as np import networkx as nx import argparse import os from numpy import linalg as LA import scipy from scipy.sparse import csgraph # from sklearn.cluster import SpectralClustering def eigenDecomposition(A): L = csgraph.laplacian(A, normed=False) n_components = A.shape[0] eigenvalues, eigenvectors = LA.eig(L) eigenvalues = sorted(eigenvalues, reverse=True) index_largest_gap = np.argmax(np.diff(eigenvalues)) nb_clusters = index_largest_gap + 1 return nb_clusters def composite_function(f, g): return lambda x: f(g(x)) def one_further_indexing( which_group, group_labels, sorted_pair_freqs, number_of_clusters, item_CF_index_map, reverse_fcts, mode, ): # select items in this large cluster one_subcluster_items = [ item for item, l in enumerate(group_labels) if l == which_group ] # edges within the subcluster subcluster_pairs = [ sorted_pair_freq for sorted_pair_freq in sorted_pair_freqs if sorted_pair_freq[0][0] in one_subcluster_items and sorted_pair_freq[0][1] in one_subcluster_items ] # remap the item indices item_map = { old_item_index: i for i, old_item_index in enumerate(one_subcluster_items) } reverse_item_map = { i: old_item_index for i, old_item_index in enumerate(one_subcluster_items) } # modify the subcluster pairs by item_map remapped_subcluster_pairs = [ ( (item_map[subcluster_pair[0][0]], item_map[subcluster_pair[0][1]]), subcluster_pair[1], ) for subcluster_pair in subcluster_pairs ] # create new matrix sub_matrix_size = len(item_map) sub_adjacency_matrix = np.zeros((sub_matrix_size, sub_matrix_size)) for pair, freq in remapped_subcluster_pairs: sub_adjacency_matrix[pair[0], pair[1]] = freq sub_adjacency_matrix[pair[1], pair[0]] = freq # compute optimal number of subclusters n = eigenDecomposition(sub_adjacency_matrix) if n <= number_of_clusters: if n != 1: number_of_clusters = n else: number_of_clusters = 2 # clustering sub_clustering = SpectralClustering( n_clusters=number_of_clusters, assign_labels="cluster_qr", random_state=0, affinity="precomputed", ).fit(sub_adjacency_matrix) sub_labels = sub_clustering.labels_.tolist() # remap the index to the actual item reversal = lambda x: x for reverse_fct in reverse_fcts: reversal = composite_function( reverse_fct, reversal ) # lambda x: reverse_fct(reversal(x)) for i, label in enumerate(sub_labels): item_CF_index_map[reversal(reverse_item_map[i])].append(str(label)) # concatenate the new reverse function new_reverse_fcts = [lambda y: reverse_item_map[y]] + reverse_fcts return sub_labels, remapped_subcluster_pairs, item_CF_index_map, new_reverse_fcts def compute_item_CF_index_map(labels, sorted_pair_freqs, item_CF_index_map, N): level_one = labels reverse_fcts = [lambda x: x] for which_group in range(N): if level_one.count(which_group) > N: ( a_labels, remapped_subcluster_pairs, item_CF_index_map, level_two_reverse_fcts, ) = one_further_indexing( which_group, labels, sorted_pair_freqs, N, item_CF_index_map, reverse_fcts, 2, ) for which_sub_group in range(N): if a_labels.count(which_sub_group) > N: (_, _, item_CF_index_map, _,) = one_further_indexing( which_sub_group, a_labels, remapped_subcluster_pairs, N, item_CF_index_map, level_two_reverse_fcts, 3, ) return item_CF_index_map def within_category_spectral_clustering(args, category_items, category_pairs): # remap items and corresponding pairs item_map = {old_item_index: i for i, old_item_index in enumerate(category_items)} reverse_item_map = { i: old_item_index for i, old_item_index in enumerate(category_items) } remapped_category_pairs = [ ( (item_map[category_pair[0][0]], item_map[category_pair[0][1]]), category_pair[1], ) for category_pair in category_pairs ] matrix_size = len(item_map) adjacency_matrix = np.zeros((matrix_size, matrix_size)) for pair, freq in remapped_category_pairs: adjacency_matrix[pair[0], pair[1]] = freq adjacency_matrix[pair[1], pair[0]] = freq # here adjacency matrix is the affinity matrix number_of_clusters = args.cluster_size clustering = SpectralClustering( n_clusters=number_of_clusters, assign_labels="cluster_qr", random_state=0, affinity="precomputed", ).fit(adjacency_matrix) labels = clustering.labels_.tolist() item_CF_index_map = {i: [str(label)] for i, label in enumerate(labels)} item_CF_index_map = compute_item_CF_index_map( labels, remapped_category_pairs, item_CF_index_map, number_of_clusters ) # add back category information item_CF_index_map = {reverse_item_map[k]: v for k, v in item_CF_index_map.items()} return item_CF_index_map ############ pure CF ############ def compute_index(item_CF_index_map): reformed_item_CF_index_map = {} for item, labels in item_CF_index_map.items(): reformed_item_CF_index_map[item] = [ "-".join(labels[: i + 1]) for i in range(len(labels)) ] vocabulary = [] enumeration_by_group = {} full_index = {} for item, clusters in reformed_item_CF_index_map.items(): if tuple(clusters) not in enumeration_by_group: v = clusters + ["A" + str(0)] full_index[item] = "".join(["<{}>".format(a) for a in v]) vocabulary += ["<{}>".format(a) for a in v] enumeration_by_group[tuple(clusters)] = 1 else: v = clusters + ["A" + str(enumeration_by_group[tuple(clusters)])] full_index[item] = "".join(["<{}>".format(a) for a in v]) vocabulary += ["<{}>".format(a) for a in v] enumeration_by_group[tuple(clusters)] += 1 vocabulary = list(set(vocabulary)) return full_index, vocabulary def construct_indices_from_cluster(args): if not os.path.isfile( args.data_dir + args.task + "/CF_indices/computed_{}_{}_CF_index.json".format( args.cluster_number, args.cluster_size ) ): with open( args.data_dir + args.task + "/CF_indices/c{}_{}_CF_index.json".format( args.cluster_number, args.cluster_size ), "r", ) as f: data = json.load(f) mapping, vocabulary = compute_index(data) with open( args.data_dir + args.task + "/CF_indices/computed_{}_{}_CF_index.json".format( args.cluster_number, args.cluster_size ), "w", ) as f: json.dump([mapping, vocabulary], f) else: if not args.last_token_no_repetition: with open( args.data_dir + args.task + "/CF_indices/computed_{}_{}_CF_index.json".format( args.cluster_number, args.cluster_size ), "r", ) as f: result = json.load(f) mapping = result[0] vocabulary = result[1] else: with open( args.data_dir + args.task + "/CF_indices/computed_no_repetition_{}_{}_CF_index.json".format( args.cluster_number, args.cluster_size ), "r", ) as f: result = json.load(f) mapping = result[0] vocabulary = result[1] for i in range(len(vocabulary) - 1, args.number_of_items): vocabulary.append("".format(i)) return mapping, vocabulary def construct_indices_from_cluster_optimal_width(args): if args.category_no_repetition: with open( args.data_dir + args.task + "/CF_indices/computed_no_repetition_optimal_{}_CF_index.json".format( args.cluster_size ), "r", ) as f: clustering, vocabulary = json.load(f) vocabulary = ["".format(item) for item in vocabulary] elif args.last_token_no_repetition: with open( args.data_dir + args.task + "/CF_indices/computed_no_repetition_at_all_optimal_{}_CF_index.json".format( args.cluster_size ), "r", ) as f: clustering, vocabulary = json.load(f) vocabulary = ["".format(item) for item in vocabulary] else: with open( args.data_dir + args.task + "/CF_indices/computed_optimal_{}_CF_index.json".format(args.cluster_size), "r", ) as f: clustering = json.load(f) vocabulary = ["".format(i) for i in range(args.cluster_size)] CF_mapping = { k: "".join(["".format(item) for item in v]) for k, v in clustering.items() } items_not_in_train = max(list([int(k) for k in CF_mapping.keys()])) for i in range( items_not_in_train, args.number_of_items ): # the rest of the test/validation datapoints does not occur in train vocabulary.append("".format(i)) return CF_mapping, vocabulary if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=42) parser.add_argument("--data_dir", type=str, default="data/") parser.add_argument("--task", type=str, default="toys") parser.add_argument("--cluster_size", type=int, default=200) parser.add_argument("--cluster_number", type=int, default=10) parser.add_argument("--last_token_no_repetition", action="store_true") parser.add_argument( "--category_no_repetition", action="store_true", help="usually not used though" ) args = parser.parse_args() if args.task == "beauty": args.number_of_items = 12102 elif args.task == "toys": args.number_of_items = 11925 elif args.task == "sports": args.number_of_items = 18358 else: args.number_of_items = 0 # mapping, vocabulary = construct_indices_from_cluster(args) mapping, vocabulary = construct_indices_from_cluster_optimal_width(args) print(mapping["0"]) print(mapping["1"]) print(mapping["2"]) print(mapping["3"]) print(mapping["4"]) print(mapping["5"]) print(mapping["6"]) print(mapping["7"]) print(mapping["8"]) print(mapping["9"]) print(mapping["10"]) print(mapping["11"]) print(mapping["12"]) print(mapping["13"]) print(mapping["14"]) print(mapping["15"]) A = list(range(0, len(mapping))) print(len(A)) B = sorted([int(a) for a in list(mapping.keys())]) print(len(B)) print(A == B)