# setdiff for data.tables, internal at the moment #547, used in not-join setdiff_ = function(x, y, by.x=seq_along(x), by.y=seq_along(y), use.names=FALSE) { if (!is.data.table(x) || !is.data.table(y)) stopf("x and y must both be data.tables") # !ncol redundant since all 0-column data.tables have 0 rows if (!nrow(x)) return(x) by.x = colnamesInt(x, by.x, check_dups=TRUE) if (!nrow(y)) return(unique(x, by=by.x)) by.y = colnamesInt(y, by.y, check_dups=TRUE) if (length(by.x) != length(by.y)) stopf("length(by.x) != length(by.y)", domain=NA) # factor in x should've factor/character in y, and vice-versa for (a in seq_along(by.x)) { lc = by.y[a] rc = by.x[a] icnam = names(y)[lc] xcnam = names(x)[rc] if ( is.character(x[[rc]]) && !(is.character(y[[lc]]) || is.factor(y[[lc]])) ) { stopf("When x's column ('%s') is character, the corresponding column in y ('%s') should be factor or character, but found incompatible type '%s'.", xcnam, icnam, typeof(y[[lc]])) } else if ( is.factor(x[[rc]]) && !(is.character(y[[lc]]) || is.factor(y[[lc]])) ) { stopf("When x's column ('%s') is factor, the corresponding column in y ('%s') should be character or factor, but found incompatible type '%s'.", xcnam, icnam, typeof(y[[lc]])) } else if ( (is.integer(x[[rc]]) || is.double(x[[rc]])) && (is.logical(y[[lc]]) || is.character(y[[lc]])) ) { stopf("When x's column ('%s') is integer or numeric, the corresponding column in y ('%s') can not be character or logical types, but found incompatible type '%s'.", xcnam, icnam, typeof(y[[lc]])) } } ux = unique(shallow(x, by.x)) uy = unique(shallow(y, by.y)) ix = duplicated(rbind(uy, ux, use.names=use.names, fill=FALSE))[-seq_len(nrow(uy))] .Call(CsubsetDT, ux, which_(ix, FALSE), seq_along(ux)) # more memory efficient version of which(!ix) } # set operators ---- funique = function(x) { stopifnot(is.data.table(x)) dup = duplicated(x) if (any(dup)) .Call(CsubsetDT, x, which_(dup, FALSE), seq_along(x)) else x } .set_ops_arg_check = function(x, y, all, .seqn = FALSE, block_list = TRUE) { if (!is.logical(all) || length(all) != 1L) stopf("argument 'all' should be logical of length one") if (!is.data.table(x) || !is.data.table(y)) stopf("x and y must both be data.tables") if (!identical(sort(names(x)), sort(names(y)))) stopf("x and y must have the same column names") if (!identical(names(x), names(y))) stopf("x and y must have the same column order") bad_types = c("raw", "complex", if (block_list) "list") found = bad_types %chin% c(vapply_1c(x, typeof), vapply_1c(y, typeof)) if (any(found)) stopf(ngettext(sum(found), "unsupported column type found in x or y: %s", "unsupported column types found in x or y: %s"), brackify(bad_types[found]), domain=NA) super = function(x) { # allow character->factor and integer->numeric because from v1.12.4 i's type is retained by joins, #3820 ans = class1(x) switch(ans, factor="character", integer="numeric", ans) } if (!identical(sx<-sapply(x, super), sy<-sapply(y, super))) { w = which.first(sx!=sy) stopf("Item %d of x is '%s' but the corresponding item of y is '%s'.", w, class1(x[[w]]), class1(y[[w]])) } if (.seqn && ".seqn" %chin% names(x)) stopf("None of the datasets should contain a column named '.seqn'") } fintersect = function(x, y, all=FALSE) { .set_ops_arg_check(x, y, all, .seqn = TRUE) if (!nrow(x) || !nrow(y)) return(x[0L]) if (all) { .seqn_id = NULL # to avoid 'no visible binding for global variable' note from R CMD check x = shallow(x)[, ".seqn" := rowidv(.seqn_id), env=list(.seqn_id=x)] y = shallow(y)[, ".seqn" := rowidv(.seqn_id), env=list(.seqn_id=y)] jn.on = c(".seqn",setdiff(names(y),".seqn")) # fixes #4716 by preserving order of 1st (uses y[x] join) argument instead of 2nd (uses x[y] join) y[x, .SD, .SDcols=setdiff(names(y),".seqn"), nomatch=NULL, on=jn.on] } else { z = funique(x) # fixes #3034. When .. prefix in i= is implemented (TODO), this can be x[funique(..y), on=, multi=] y[z, nomatch=NULL, on=names(y), mult="first"] } } fsetdiff = function(x, y, all=FALSE) { .set_ops_arg_check(x, y, all, .seqn = TRUE) if (!nrow(x)) return(x) if (!nrow(y)) return(if (!all) funique(x) else x) if (all) { .seqn_id = NULL # to avoid 'no visible binding for global variable' note from R CMD check x = shallow(x)[, ".seqn" := rowidv(.seqn_id), env=list(.seqn_id=x)] y = shallow(y)[, ".seqn" := rowidv(.seqn_id), env=list(.seqn_id=y)] jn.on = c(".seqn",setdiff(names(x),".seqn")) x[!y, .SD, .SDcols=setdiff(names(x),".seqn"), on=jn.on] } else { funique(x[!y, on=names(x)]) } } funion = function(x, y, all=FALSE) { .set_ops_arg_check(x, y, all, block_list = !all) ans = rbindlist(list(x, y)) if (!all) ans = funique(ans) ans } fsetequal = function(x, y, all=TRUE) { .set_ops_arg_check(x, y, all) if (!all) { x = funique(x) y = funique(y) } isTRUE(all.equal.data.table(x, y, check.attributes = FALSE, ignore.row.order = TRUE)) } # all.equal ---- all.equal.data.table = function(target, current, trim.levels=TRUE, check.attributes=TRUE, ignore.col.order=FALSE, ignore.row.order=FALSE, tolerance=sqrt(.Machine$double.eps), ...) { stopifnot(is.logical(trim.levels), is.logical(check.attributes), is.logical(ignore.col.order), is.logical(ignore.row.order), is.numeric(tolerance), is.data.table(target)) if (!is.data.table(current)) { if (check.attributes) return(paste0('target is data.table, current is ', data.class(current))) try({current = as.data.table(current)}, silent = TRUE) if (!is.data.table(current)) return('target is data.table but current is not and failed to be coerced to it') } msg = character(0L) # init checks that detect high level all.equal if (nrow(current) != nrow(target)) msg = "Different number of rows" if (ncol(current) != ncol(target)) msg = c(msg, "Different number of columns") diff.colnames = !identical(sort(names(target)), sort(names(current))) diff.colorder = !identical(names(target), names(current)) if (check.attributes && diff.colnames) msg = c(msg, "Different column names") if (!diff.colnames && !ignore.col.order && diff.colorder) msg = c(msg, "Different column order") if (length(msg)) return(msg) # skip check.attributes and further heavy processing # ignore.col.order if (ignore.col.order && diff.colorder) current = setcolorder(shallow(current), names(target)) # Always check modes equal, like base::all.equal targetModes = vapply_1c(target, mode) currentModes = vapply_1c(current, mode) if (any( d<-(targetModes!=currentModes) )) { w = head(which(d),3L) return(paste0("Datasets have different column modes. First 3: ",paste( paste0(names(targetModes)[w],"(",paste(targetModes[w],currentModes[w],sep="!="),")") ,collapse=" "))) } if (check.attributes) { squashClass = function(x) if (is.object(x)) paste(class(x),collapse=";") else mode(x) # else mode() is so that integer==numeric, like base all.equal does. targetTypes = vapply_1c(target, squashClass) currentTypes = vapply_1c(current, squashClass) if (length(targetTypes) != length(currentTypes)) internal_error("ncol(current)==ncol(target) was checked above") # nocov if (any( d<-(targetTypes != currentTypes))) { w = head(which(d),3L) return(paste0("Datasets have different column classes. First 3: ",paste( paste0(names(targetTypes)[w],"(",paste(targetTypes[w],currentTypes[w],sep="!="),")") ,collapse=" "))) } # check key k1 = key(target) k2 = key(current) if (!identical(k1, k2)) { return(sprintf( "%s. 'target': %s. 'current': %s.", gettext("Datasets have different keys"), if(length(k1)) brackify(k1) else gettextf("has no key"), if(length(k2)) brackify(k2) else gettextf("has no key") )) } # check index i1 = indices(target) i2 = indices(current) if (!identical(i1, i2)) { return(sprintf( "%s. 'target': %s. 'current': %s.", gettext("Datasets have different indices"), if(length(i1)) brackify(i1) else gettextf("has no index"), if(length(i2)) brackify(i2) else gettextf("has no index") )) } # Trim any extra row.names attributes that came from some inheritance # Trim ".internal.selfref" as long as there is no `all.equal.externalptr` method exclude.attrs = function(x, attrs = c("row.names",".internal.selfref")) x[!names(x) %chin% attrs] a1 = exclude.attrs(attributes(target)) a2 = exclude.attrs(attributes(current)) if (length(a1) != length(a2)) return(sprintf("Datasets has different number of (non-excluded) attributes: target %s, current %s", length(a1), length(a2))) if (!identical(nm1 <- sort(names(a1)), nm2 <- sort(names(a2)))) return(sprintf("Datasets has attributes with different names: %s", brackify(setdiff(union(names(a1), names(a2)), intersect(names(a1), names(a2)))))) attrs.r = all.equal(a1[nm1], a2[nm2], ..., check.attributes = check.attributes) if (is.character(attrs.r)) return(paste("Attributes: <", attrs.r, ">")) # skip further heavy processing } if (ignore.row.order) { if (".seqn" %chin% names(target)) stopf("None of the datasets to compare should contain a column named '.seqn'") bad.type = setNames(c("raw","complex","list") %chin% c(vapply_1c(current, typeof), vapply_1c(target, typeof)), c("raw","complex","list")) if (any(bad.type)) stopf("Datasets to compare with 'ignore.row.order' must not have unsupported column types: %s", brackify(names(bad.type)[bad.type])) if (between(tolerance, 0, sqrt(.Machine$double.eps), incbounds=FALSE)) { warningf("Argument 'tolerance' was forced to lowest accepted value `sqrt(.Machine$double.eps)` from provided %s", format(tolerance, scientific=FALSE)) tolerance = sqrt(.Machine$double.eps) } target_dup = as.logical(anyDuplicated(target)) current_dup = as.logical(anyDuplicated(current)) tolerance.msg = if (identical(tolerance, 0)) ", be aware you are using `tolerance=0` which may result into visually equal data" else "" if (target_dup || current_dup) { # handling 'tolerance' for duplicate rows - those `msg` will be returned only when equality with tolerance will fail if (any(vapply_1c(target,typeof)=="double") && !identical(tolerance, 0)) { if (target_dup && !current_dup) msg = c(msg, "Dataset 'target' has duplicate rows while 'current' doesn't") else if (!target_dup && current_dup) msg = c(msg, "Dataset 'current' has duplicate rows while 'target' doesn't") else { # both if (!identical(tolerance, sqrt(.Machine$double.eps))) # non-default will raise error stopf("Duplicate rows in datasets, numeric columns and ignore.row.order cannot be used with non 0 tolerance argument") msg = c(msg, "Both datasets have duplicate rows, they also have numeric columns, together with ignore.row.order this force 'tolerance' argument to 0") tolerance = 0 } } else { # no numeric columns or tolerance==0L if (target_dup && !current_dup) return(sprintf("Dataset 'target' has duplicate rows while 'current' doesn't%s", tolerance.msg)) if (!target_dup && current_dup) return(sprintf("Dataset 'current' has duplicate rows while 'target' doesn't%s", tolerance.msg)) } } # handling 'tolerance' for factor cols - those `msg` will be returned only when equality with tolerance will fail if (any(vapply_1b(target,is.factor)) && !identical(tolerance, 0)) { if (!identical(tolerance, sqrt(.Machine$double.eps))) # non-default will raise error stopf("Factor columns and ignore.row.order cannot be used with non 0 tolerance argument") msg = c(msg, "Using factor columns together together with ignore.row.order, this force 'tolerance' argument to 0") tolerance = 0 } jn.on = copy(names(target)) # default, possible altered later on dbl.cols = vapply_1c(target,typeof)=="double" if (!identical(tolerance, 0)) { if (!any(dbl.cols)) { # dbl.cols handles (removed) "all character columns" (char.cols) case as well tolerance = 0 } else { jn.on = jn.on[c(which(!dbl.cols), which(dbl.cols))] # double column must be last for rolling join } } if (target_dup && current_dup) { target = shallow(target)[, ".seqn" := rowidv(target)] current = shallow(current)[, ".seqn" := rowidv(current)] jn.on = c(".seqn", jn.on) } # roll join to support 'tolerance' argument, conditional to retain support for factor when tolerance=0 ans = if (identical(tolerance, 0)) target[current, nomatch=NA, which=TRUE, on=jn.on] else { ans1 = target[current, roll=tolerance, rollends=TRUE, which=TRUE, on=jn.on] ans2 = target[current, roll=-tolerance, rollends=TRUE, which=TRUE, on=jn.on] pmin(ans1, ans2, na.rm=TRUE) } if (any_na(as_list(ans))) { msg = c(msg, sprintf("Dataset 'current' has rows not present in 'target'%s%s", if (target_dup || current_dup) " or present in different quantity" else "", tolerance.msg)) return(msg) } # rolling join other way around ans = if (identical(tolerance, 0)) current[target, nomatch=NA, which=TRUE, on=jn.on] else { ans1 = current[target, roll=tolerance, rollends=TRUE, which=TRUE, on=jn.on] ans2 = current[target, roll=-tolerance, rollends=TRUE, which=TRUE, on=jn.on] pmin(ans1, ans2, na.rm=TRUE) } if (any_na(as_list(ans))) { msg = c(msg, sprintf("Dataset 'target' has rows not present in 'current'%s%s", if (target_dup || current_dup) " or present in different quantity" else "", tolerance.msg)) return(msg) } } else { for (i in seq_along(target)) { # trim.levels moved here x = target[[i]] y = current[[i]] if (XOR(is.factor(x), is.factor(y))) internal_error("factor type mismatch should have been caught earlier") # nocov cols.r = TRUE if (is.factor(x)) { if (!identical(levels(x),levels(y))) { if (trim.levels) { # do this regardless of check.attributes (that's more about classes, checked above) x = factor(x) y = factor(y) if (!identical(levels(x),levels(y))) cols.r = "Levels not identical even after refactoring since trim.levels is TRUE" } else { cols.r = "Levels not identical. No attempt to refactor because trim.levels is FALSE" } } else { cols.r = all.equal(x, y, check.attributes=check.attributes) # the check.attributes here refers to everything other than the levels, which are always # dealt with according to trim.levels } } else { # for test 1710.5 and #4543, we want to (1) make sure we dispatch to # any existing all.equal methods for x while also (2) treating class(x)/class(y) # as attributes as regards check.attributes argument cols.r = all.equal(x, y, tolerance=tolerance, ..., check.attributes=check.attributes) if (!isTRUE(cols.r) && !check.attributes && isTRUE(all.equal(unclass(x), unclass(y), tolerance=tolerance, ..., check.attributes=FALSE))) cols.r = TRUE } if (!isTRUE(cols.r)) return(paste0("Column '", names(target)[i], "': ", paste(cols.r,collapse=" "))) } } TRUE }