This repository has been archived by the owner on Dec 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 464
/
Copy pathCartPole_DDQN_BatchRL.py
91 lines (72 loc) · 3.87 KB
/
CartPole_DDQN_BatchRL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from copy import deepcopy
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.gym_environment import GymVectorEnvironment
from rl_coach.filters.filter import InputFilter
from rl_coach.filters.reward import RewardRescaleFilter
from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
from rl_coach.memories.episodic import EpisodicExperienceReplayParameters
DATASET_SIZE = 40000
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = TrainingSteps(1)
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE)
#########
# Agent #
#########
# TODO add a preset which uses a dataset to train a BatchRL graph. e.g. save a cartpole dataset in a csv format.
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].batch_size = 128
# DQN params
# agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(100)
# For making this become Fitted Q-Iteration we can keep the targets constant for the entire dataset size -
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
DATASET_SIZE / agent_params.network_wrappers['main'].batch_size)
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
agent_params.algorithm.discount = 0.98
# agent_params.algorithm.discount = 1.0
# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
agent_params.network_wrappers['main'].l2_regularization = 0.0001
agent_params.network_wrappers['main'].softmax_temperature = 0.2
# agent_params.network_wrappers['main'].learning_rate_decay_rate = 0.95
# agent_params.network_wrappers['main'].learning_rate_decay_steps = int(DATASET_SIZE /
# agent_params.network_wrappers['main'].batch_size)
# reward model params
agent_params.network_wrappers['reward_model'] = deepcopy(agent_params.network_wrappers['main'])
agent_params.network_wrappers['reward_model'].learning_rate = 0.0001
agent_params.network_wrappers['reward_model'].l2_regularization = 0
# ER size
agent_params.memory = EpisodicExperienceReplayParameters()
agent_params.memory.max_size = (MemoryGranularity.Transitions, DATASET_SIZE)
# E-Greedy schedule
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
agent_params.exploration.evaluation_epsilon = 0
agent_params.input_filter = InputFilter()
agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/200.))
################
# Environment #
################
env_params = GymVectorEnvironment(level='CartPole-v0')
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 150
preset_validation_params.max_episodes_to_achieve_reward = 2000
graph_manager = BatchRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params,
vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1),
preset_validation_params=preset_validation_params,
reward_model_num_epochs=30,
train_to_eval_ratio=0.8)