-
Notifications
You must be signed in to change notification settings - Fork 164
/
train.py
417 lines (360 loc) · 19.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# ---------------------------------------------------------------
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# for NVAE. To view a copy of this license, see the LICENSE file.
# ---------------------------------------------------------------
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import torch.distributed as dist
from torch.multiprocessing import Process
from torch.cuda.amp import autocast, GradScaler
from model import AutoEncoder
from thirdparty.adamax import Adamax
import utils
import datasets
def main(args):
# ensures that weight initializations are all the same
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
logging = utils.Logger(args.global_rank, args.save)
writer = utils.Writer(args.global_rank, args.save)
# Get data loaders.
train_queue, valid_queue, num_classes = datasets.get_loaders(args)
args.num_total_iter = len(train_queue) * args.epochs
warmup_iters = len(train_queue) * args.warmup_epochs
swa_start = len(train_queue) * (args.epochs - 1)
arch_instance = utils.get_arch_cells(args.arch_instance)
model = AutoEncoder(args, writer, arch_instance)
model = model.cuda()
logging.info('args = %s', args)
logging.info('param size = %fM ', utils.count_parameters_in_M(model))
logging.info('groups per scale: %s, total_groups: %d', model.groups_per_scale, sum(model.groups_per_scale))
if args.fast_adamax:
# Fast adamax has the same functionality as torch.optim.Adamax, except it is faster.
cnn_optimizer = Adamax(model.parameters(), args.learning_rate,
weight_decay=args.weight_decay, eps=1e-3)
else:
cnn_optimizer = torch.optim.Adamax(model.parameters(), args.learning_rate,
weight_decay=args.weight_decay, eps=1e-3)
cnn_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
cnn_optimizer, float(args.epochs - args.warmup_epochs - 1), eta_min=args.learning_rate_min)
grad_scalar = GradScaler(2**10)
num_output = utils.num_output(args.dataset)
bpd_coeff = 1. / np.log(2.) / num_output
# if load
checkpoint_file = os.path.join(args.save, 'checkpoint.pt')
if args.cont_training:
logging.info('loading the model.')
checkpoint = torch.load(checkpoint_file, map_location='cpu')
init_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
model = model.cuda()
cnn_optimizer.load_state_dict(checkpoint['optimizer'])
grad_scalar.load_state_dict(checkpoint['grad_scalar'])
cnn_scheduler.load_state_dict(checkpoint['scheduler'])
global_step = checkpoint['global_step']
else:
global_step, init_epoch = 0, 0
for epoch in range(init_epoch, args.epochs):
# update lrs.
if args.distributed:
train_queue.sampler.set_epoch(global_step + args.seed)
valid_queue.sampler.set_epoch(0)
if epoch > args.warmup_epochs:
cnn_scheduler.step()
# Logging.
logging.info('epoch %d', epoch)
# Training.
train_nelbo, global_step = train(train_queue, model, cnn_optimizer, grad_scalar, global_step, warmup_iters, writer, logging)
logging.info('train_nelbo %f', train_nelbo)
writer.add_scalar('train/nelbo', train_nelbo, global_step)
model.eval()
# generate samples less frequently
eval_freq = 1 if args.epochs <= 50 else 20
if epoch % eval_freq == 0 or epoch == (args.epochs - 1):
with torch.no_grad():
num_samples = 16
n = int(np.floor(np.sqrt(num_samples)))
for t in [0.7, 0.8, 0.9, 1.0]:
logits = model.sample(num_samples, t)
output = model.decoder_output(logits)
output_img = output.mean if isinstance(output, torch.distributions.bernoulli.Bernoulli) else output.sample(t)
output_tiled = utils.tile_image(output_img, n)
writer.add_image('generated_%0.1f' % t, output_tiled, global_step)
valid_neg_log_p, valid_nelbo = test(valid_queue, model, num_samples=10, args=args, logging=logging)
logging.info('valid_nelbo %f', valid_nelbo)
logging.info('valid neg log p %f', valid_neg_log_p)
logging.info('valid bpd elbo %f', valid_nelbo * bpd_coeff)
logging.info('valid bpd log p %f', valid_neg_log_p * bpd_coeff)
writer.add_scalar('val/neg_log_p', valid_neg_log_p, epoch)
writer.add_scalar('val/nelbo', valid_nelbo, epoch)
writer.add_scalar('val/bpd_log_p', valid_neg_log_p * bpd_coeff, epoch)
writer.add_scalar('val/bpd_elbo', valid_nelbo * bpd_coeff, epoch)
save_freq = int(np.ceil(args.epochs / 100))
if epoch % save_freq == 0 or epoch == (args.epochs - 1):
if args.global_rank == 0:
logging.info('saving the model.')
torch.save({'epoch': epoch + 1, 'state_dict': model.state_dict(),
'optimizer': cnn_optimizer.state_dict(), 'global_step': global_step,
'args': args, 'arch_instance': arch_instance, 'scheduler': cnn_scheduler.state_dict(),
'grad_scalar': grad_scalar.state_dict()}, checkpoint_file)
# Final validation
valid_neg_log_p, valid_nelbo = test(valid_queue, model, num_samples=1000, args=args, logging=logging)
logging.info('final valid nelbo %f', valid_nelbo)
logging.info('final valid neg log p %f', valid_neg_log_p)
writer.add_scalar('val/neg_log_p', valid_neg_log_p, epoch + 1)
writer.add_scalar('val/nelbo', valid_nelbo, epoch + 1)
writer.add_scalar('val/bpd_log_p', valid_neg_log_p * bpd_coeff, epoch + 1)
writer.add_scalar('val/bpd_elbo', valid_nelbo * bpd_coeff, epoch + 1)
writer.close()
def train(train_queue, model, cnn_optimizer, grad_scalar, global_step, warmup_iters, writer, logging):
alpha_i = utils.kl_balancer_coeff(num_scales=model.num_latent_scales,
groups_per_scale=model.groups_per_scale, fun='square')
nelbo = utils.AvgrageMeter()
model.train()
for step, x in enumerate(train_queue):
x = x[0] if len(x) > 1 else x
x = x.cuda()
# change bit length
x = utils.pre_process(x, args.num_x_bits)
# warm-up lr
if global_step < warmup_iters:
lr = args.learning_rate * float(global_step) / warmup_iters
for param_group in cnn_optimizer.param_groups:
param_group['lr'] = lr
# sync parameters, it may not be necessary
if step % 100 == 0:
utils.average_params(model.parameters(), args.distributed)
cnn_optimizer.zero_grad()
with autocast():
logits, log_q, log_p, kl_all, kl_diag = model(x)
output = model.decoder_output(logits)
kl_coeff = utils.kl_coeff(global_step, args.kl_anneal_portion * args.num_total_iter,
args.kl_const_portion * args.num_total_iter, args.kl_const_coeff)
recon_loss = utils.reconstruction_loss(output, x, crop=model.crop_output)
balanced_kl, kl_coeffs, kl_vals = utils.kl_balancer(kl_all, kl_coeff, kl_balance=True, alpha_i=alpha_i)
nelbo_batch = recon_loss + balanced_kl
loss = torch.mean(nelbo_batch)
norm_loss = model.spectral_norm_parallel()
bn_loss = model.batchnorm_loss()
# get spectral regularization coefficient (lambda)
if args.weight_decay_norm_anneal:
assert args.weight_decay_norm_init > 0 and args.weight_decay_norm > 0, 'init and final wdn should be positive.'
wdn_coeff = (1. - kl_coeff) * np.log(args.weight_decay_norm_init) + kl_coeff * np.log(args.weight_decay_norm)
wdn_coeff = np.exp(wdn_coeff)
else:
wdn_coeff = args.weight_decay_norm
loss += norm_loss * wdn_coeff + bn_loss * wdn_coeff
grad_scalar.scale(loss).backward()
utils.average_gradients(model.parameters(), args.distributed)
grad_scalar.step(cnn_optimizer)
grad_scalar.update()
nelbo.update(loss.data, 1)
if (global_step + 1) % 100 == 0:
if (global_step + 1) % 1000 == 0: # reduced frequency
n = int(np.floor(np.sqrt(x.size(0))))
x_img = x[:n*n]
output_img = output.mean if isinstance(output, torch.distributions.bernoulli.Bernoulli) else output.sample()
output_img = output_img[:n*n]
x_tiled = utils.tile_image(x_img, n)
output_tiled = utils.tile_image(output_img, n)
in_out_tiled = torch.cat((x_tiled, output_tiled), dim=2)
writer.add_image('reconstruction', in_out_tiled, global_step)
# norm
writer.add_scalar('train/norm_loss', norm_loss, global_step)
writer.add_scalar('train/bn_loss', bn_loss, global_step)
writer.add_scalar('train/norm_coeff', wdn_coeff, global_step)
utils.average_tensor(nelbo.avg, args.distributed)
logging.info('train %d %f', global_step, nelbo.avg)
writer.add_scalar('train/nelbo_avg', nelbo.avg, global_step)
writer.add_scalar('train/lr', cnn_optimizer.state_dict()[
'param_groups'][0]['lr'], global_step)
writer.add_scalar('train/nelbo_iter', loss, global_step)
writer.add_scalar('train/kl_iter', torch.mean(sum(kl_all)), global_step)
writer.add_scalar('train/recon_iter', torch.mean(utils.reconstruction_loss(output, x, crop=model.crop_output)), global_step)
writer.add_scalar('kl_coeff/coeff', kl_coeff, global_step)
total_active = 0
for i, kl_diag_i in enumerate(kl_diag):
utils.average_tensor(kl_diag_i, args.distributed)
num_active = torch.sum(kl_diag_i > 0.1).detach()
total_active += num_active
# kl_ceoff
writer.add_scalar('kl/active_%d' % i, num_active, global_step)
writer.add_scalar('kl_coeff/layer_%d' % i, kl_coeffs[i], global_step)
writer.add_scalar('kl_vals/layer_%d' % i, kl_vals[i], global_step)
writer.add_scalar('kl/total_active', total_active, global_step)
global_step += 1
utils.average_tensor(nelbo.avg, args.distributed)
return nelbo.avg, global_step
def test(valid_queue, model, num_samples, args, logging):
if args.distributed:
dist.barrier()
nelbo_avg = utils.AvgrageMeter()
neg_log_p_avg = utils.AvgrageMeter()
model.eval()
for step, x in enumerate(valid_queue):
x = x[0] if len(x) > 1 else x
x = x.cuda()
# change bit length
x = utils.pre_process(x, args.num_x_bits)
with torch.no_grad():
nelbo, log_iw = [], []
for k in range(num_samples):
logits, log_q, log_p, kl_all, _ = model(x)
output = model.decoder_output(logits)
recon_loss = utils.reconstruction_loss(output, x, crop=model.crop_output)
balanced_kl, _, _ = utils.kl_balancer(kl_all, kl_balance=False)
nelbo_batch = recon_loss + balanced_kl
nelbo.append(nelbo_batch)
log_iw.append(utils.log_iw(output, x, log_q, log_p, crop=model.crop_output))
nelbo = torch.mean(torch.stack(nelbo, dim=1))
log_p = torch.mean(torch.logsumexp(torch.stack(log_iw, dim=1), dim=1) - np.log(num_samples))
nelbo_avg.update(nelbo.data, x.size(0))
neg_log_p_avg.update(- log_p.data, x.size(0))
utils.average_tensor(nelbo_avg.avg, args.distributed)
utils.average_tensor(neg_log_p_avg.avg, args.distributed)
if args.distributed:
# block to sync
dist.barrier()
logging.info('val, step: %d, NELBO: %f, neg Log p %f', step, nelbo_avg.avg, neg_log_p_avg.avg)
return neg_log_p_avg.avg, nelbo_avg.avg
def init_processes(rank, size, fn, args):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = args.master_address
os.environ['MASTER_PORT'] = '6020'
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size)
fn(args)
cleanup()
def cleanup():
dist.destroy_process_group()
if __name__ == '__main__':
parser = argparse.ArgumentParser('encoder decoder examiner')
# experimental results
parser.add_argument('--root', type=str, default='/tmp/nasvae/expr',
help='location of the results')
parser.add_argument('--save', type=str, default='exp',
help='id used for storing intermediate results')
# data
parser.add_argument('--dataset', type=str, default='mnist',
choices=['cifar10', 'mnist', 'celeba_64', 'celeba_256',
'imagenet_32', 'ffhq', 'lsun_bedroom_128'],
help='which dataset to use')
parser.add_argument('--data', type=str, default='/tmp/nasvae/data',
help='location of the data corpus')
# optimization
parser.add_argument('--batch_size', type=int, default=200,
help='batch size per GPU')
parser.add_argument('--learning_rate', type=float, default=1e-2,
help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=1e-4,
help='min learning rate')
parser.add_argument('--weight_decay', type=float, default=3e-4,
help='weight decay')
parser.add_argument('--weight_decay_norm', type=float, default=0.,
help='The lambda parameter for spectral regularization.')
parser.add_argument('--weight_decay_norm_init', type=float, default=10.,
help='The initial lambda parameter')
parser.add_argument('--weight_decay_norm_anneal', action='store_true', default=False,
help='This flag enables annealing the lambda coefficient from '
'--weight_decay_norm_init to --weight_decay_norm.')
parser.add_argument('--epochs', type=int, default=200,
help='num of training epochs')
parser.add_argument('--warmup_epochs', type=int, default=5,
help='num of training epochs in which lr is warmed up')
parser.add_argument('--fast_adamax', action='store_true', default=False,
help='This flag enables using our optimized adamax.')
parser.add_argument('--arch_instance', type=str, default='res_mbconv',
help='path to the architecture instance')
# KL annealing
parser.add_argument('--kl_anneal_portion', type=float, default=0.3,
help='The portions epochs that KL is annealed')
parser.add_argument('--kl_const_portion', type=float, default=0.0001,
help='The portions epochs that KL is constant at kl_const_coeff')
parser.add_argument('--kl_const_coeff', type=float, default=0.0001,
help='The constant value used for min KL coeff')
# Flow params
parser.add_argument('--num_nf', type=int, default=0,
help='The number of normalizing flow cells per groups. Set this to zero to disable flows.')
parser.add_argument('--num_x_bits', type=int, default=8,
help='The number of bits used for representing data for colored images.')
# latent variables
parser.add_argument('--num_latent_scales', type=int, default=1,
help='the number of latent scales')
parser.add_argument('--num_groups_per_scale', type=int, default=10,
help='number of groups of latent variables per scale')
parser.add_argument('--num_latent_per_group', type=int, default=20,
help='number of channels in latent variables per group')
parser.add_argument('--ada_groups', action='store_true', default=False,
help='Settings this to true will set different number of groups per scale.')
parser.add_argument('--min_groups_per_scale', type=int, default=1,
help='the minimum number of groups per scale.')
# encoder parameters
parser.add_argument('--num_channels_enc', type=int, default=32,
help='number of channels in encoder')
parser.add_argument('--num_preprocess_blocks', type=int, default=2,
help='number of preprocessing blocks')
parser.add_argument('--num_preprocess_cells', type=int, default=3,
help='number of cells per block')
parser.add_argument('--num_cell_per_cond_enc', type=int, default=1,
help='number of cell for each conditional in encoder')
# decoder parameters
parser.add_argument('--num_channels_dec', type=int, default=32,
help='number of channels in decoder')
parser.add_argument('--num_postprocess_blocks', type=int, default=2,
help='number of postprocessing blocks')
parser.add_argument('--num_postprocess_cells', type=int, default=3,
help='number of cells per block')
parser.add_argument('--num_cell_per_cond_dec', type=int, default=1,
help='number of cell for each conditional in decoder')
# NAS
parser.add_argument('--use_se', action='store_true', default=False,
help='This flag enables squeeze and excitation.')
parser.add_argument('--res_dist', action='store_true', default=False,
help='This flag enables squeeze and excitation.')
parser.add_argument('--cont_training', action='store_true', default=False,
help='This flag enables training from an existing checkpoint.')
# DDP.
parser.add_argument('--num_proc_node', type=int, default=1,
help='The number of nodes in multi node env.')
parser.add_argument('--node_rank', type=int, default=0,
help='The index of node.')
parser.add_argument('--local_rank', type=int, default=0,
help='rank of process in the node')
parser.add_argument('--global_rank', type=int, default=0,
help='rank of process among all the processes')
parser.add_argument('--num_process_per_node', type=int, default=1,
help='number of gpus')
parser.add_argument('--master_address', type=str, default='127.0.0.1',
help='address for master')
parser.add_argument('--seed', type=int, default=1,
help='seed used for initialization')
args = parser.parse_args()
args.save = args.root + '/eval-' + args.save
utils.create_exp_dir(args.save)
size = args.num_process_per_node
if size > 1:
args.distributed = True
processes = []
for rank in range(size):
args.local_rank = rank
global_rank = rank + args.node_rank * args.num_process_per_node
global_size = args.num_proc_node * args.num_process_per_node
args.global_rank = global_rank
print('Node rank %d, local proc %d, global proc %d' % (args.node_rank, rank, global_rank))
p = Process(target=init_processes, args=(global_rank, global_size, main, args))
p.start()
processes.append(p)
for p in processes:
p.join()
else:
# for debugging
print('starting in debug mode')
args.distributed = True
init_processes(0, size, main, args)