Skip to content

"Efficient Neural Architecture Search via Parameter Sharing" implementation in PyTorch

License

Notifications You must be signed in to change notification settings

MengTianjian/enas-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ENAS CIFAR-10 Implementation in PyTorch

"Efficient Neural Architecture Search via Parameter Sharing" implementation in PyTorch

Includes code for CIFAR-10 image classification task.

Paper: https://arxiv.org/abs/1802.03268

Authors: Hieu Pham*, Melody Y. Guan*, Barret Zoph, Quoc V. Le, Jeff Dean

Prerequisites

  • PyTorch 0.4.0+

CIFAR-10

To run the ENAS experiments on the micro search space, please use:

python train_search.py

TODO

  • Search in micro search space in CIFAR-10
  • Train micro architecture from scratch in CIFAR-10
  • Search in macro search space in CIFAR-10
  • Train macro architecture from scratch in CIFAR-10

Acknowledgements

This implementation is based on

About

"Efficient Neural Architecture Search via Parameter Sharing" implementation in PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages