






http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://github.com/LaurentRosenfeld/think_raku/
https://github.com/LaurentRosenfeld/think_raku/




http://perl.developpez.com/cours/#TutorielsPerl6
http://greenteapress.com/wp/think-python-2e/
http://allen-downey.developpez.com/livres/python/pensez-python/


think.perl6 (at) gmail.com






































https://repl.it/languages/raku
https://glot.io/new/raku
http://rakudo.org/how-to-get-rakudo/
http://rakudo.org/how-to-get-rakudo/
https://raku.org/downloads/
















































































































































http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number










http://en.wikipedia.org/wiki/Ackermann_function










http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture






























https://docs.raku.org/routine/split
https://docs.raku.org/routine/split


















https://docs.raku.org/language/regexes#Look-around_assertions
https://docs.raku.org/language/regexes#Look-around_assertions


































http://wikipedia.org/wiki/Moby_Project
https://github.com/LaurentRosenfeld/think_raku/tree/master/Supplementary/words.txt
https://github.com/LaurentRosenfeld/think_raku/tree/master/Supplementary/words.txt














http://www.cartalk.com/content/puzzlers


http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers




















































http://en.wikipedia.org/wiki/Birthday_paradox


http://puzzlers.org


































http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers


http://www.speech.cs.cmu.edu/cgi-bin/cmudict














http://gutenberg.org


http://www.gutenberg.org/files/158/158-0.txt
http://www.gutenberg.org/files/158/158-0.txt
https://github.com/LaurentRosenfeld/think_raku/blob/master/Supplementary/emma.txt
https://github.com/LaurentRosenfeld/think_raku/blob/master/Supplementary/emma.txt


https://github.com/LaurentRosenfeld/think_raku/blob/master/Supplementary/emma.txt
https://github.com/LaurentRosenfeld/think_raku/blob/master/Supplementary/emma.txt












https://doc.raku.org/language/setbagmix




















https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging






http://www.gutenberg.org/files/2147/2147-0.txt
http://www.gutenberg.org/files/2147/2147-0.txt










https://docs.Raku.org
https://docs.Raku.org/language/concurrency
https://docs.Raku.org/language/exceptions
https://docs.Raku.org/language/ipc
https://docs.Raku.org/language/modules
https://docs.Raku.org/language/modules
https://docs.Raku.org/language/nativecall
https://docs.Raku.org/language/nativecall


























































http://www.perlmonks.org/?node_id=1146129
http://www.perlmonks.org/?node_id=1146129






























https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON








https://github.com/moritz/json
https://github.com/moritz/json








https://github.com/jnthn/grammar-debugger/




































https://en.wikipedia.org/wiki/Comb_sort












http://rosettacode.org/wiki/Same_Fringe
http://rosettacode.org/wiki/Same_Fringe




















http://testanything.org/
http://testanything.org/


https://docs.raku.org/language/testing.html












modules.Raku.org








http://raku.guide/
http://raku.guide/
https://docs.raku.org/




































https://en.wikipedia.org/wiki/Euclidean_algorithm




















































































https://docs.raku.org/routine/trans








https://doc.raku.org/language/testing







































































	Preface
	I Starting with the Basics
	The Way of the Program
	What is a Program?
	Running Raku
	The First Program
	Arithmetic Operators
	Values and Types
	Formal and Natural Languages
	Debugging
	Glossary
	Exercises

	Variables, Expressions and Statements
	Assignment Statements
	Variable Names
	Expressions and Statements
	Script Mode
	One-Liner Mode
	Order of Operations
	String Operations
	Comments
	Debugging
	Glossary
	Exercises

	Functions
	Function Calls
	Functions and Methods
	Math functions
	Composition
	Adding New Functions (a.k.a. Subroutines)
	Definitions and Uses
	Flow of Execution
	Parameters and Arguments
	Variables and Parameters Are Local
	Stack Diagrams
	Fruitful Functions and Void Functions
	Function Signatures
	Immutable and Mutable Parameters
	Functions and Subroutines as First-Class Citizens
	Why Functions and Subroutines?
	Debugging
	Glossary
	Exercises

	Loops, Conditionals, and Recursion
	Integer Division and Modulo
	Boolean Expressions
	Logical Operators
	Conditional Execution
	Alternative Execution
	Chained Conditionals
	Nested Conditionals
	If Conditionals as Statement Modifiers
	Unless Conditional Statement
	For Loops
	Recursion
	Stack Diagrams for Recursive Subroutines
	Infinite Recursion
	Keyboard Input
	Program Arguments and the MAIN Subroutine
	Debugging
	Glossary
	Exercises

	Fruitful Subroutines
	Return Values
	Incremental Development
	Composition
	Boolean Functions
	A Complete Programming Language
	More Recursion
	Leap of Faith
	One More Example
	Checking Types
	Multi Subroutines
	Debugging
	Glossary
	Exercises

	Iteration
	Assignment Versus Equality
	Reassignment
	Updating Variables
	The while Statement
	Local Variables and Variable Scoping
	Control Flow Statements (last, next, etc.)
	Square Roots
	Algorithms
	Debugging
	Glossary
	Exercises

	Strings
	A String is a Sequence
	Common String Operators
	String Length
	Searching For a Substring Within the String
	Extracting a Substring from a String
	A Few Other Useful String Functions or Methods

	String Traversal With a while or for Loop
	Looping and Counting
	Regular Expressions (Regexes)
	Using Regexes
	Building your Regex Patterns
	Literal Matching
	Wildcards and Character Classes
	Quantifiers
	Anchors and Assertions
	Alternation
	Grouping and Capturing
	Adverbs (a.k.a. Modifiers)
	Exercises on Regexes

	Putting It All Together
	Extracting Dates
	Extracting an IP Address

	Substitutions
	The subst Method
	The s/search/replace/ Construct
	Using Captures
	Adverbs

	Debugging
	Glossary
	Exercises

	Case Study: Word Play
	Reading from and Writing to Files
	Reading Word Lists
	Exercises
	Search
	Words Longer Than 20 Characters (Solution)
	Words with No ``e'' (Solution)
	Avoiding Other Letters (Solution)
	Using Only Some Letters (Solution)
	Using All Letters of a List (Solution)
	Alphabetic Order (Solution)
	Another Example of Reduction to a Previously Solved Problem

	Debugging
	Glossary
	Exercises

	Arrays and Lists
	Lists and Arrays Are Sequences
	Arrays Are Mutable
	Adding New Elements to an Array or Removing Some
	Stacks and Queues
	Other Ways to Modify an Array
	Traversing a List
	New Looping Constructs
	Map, Filter and Reduce
	Reducing a List to a Value
	The Reduction Metaoperator
	Mapping a List to Another List
	Filtering the Elements of a List
	Higher Order Functions and Functional Programming

	Fixed-Size, Typed and Shaped Arrays
	Multidimensional Arrays
	Sorting Arrays or Lists
	More Advanced Sorting Techniques
	Debugging
	Glossary
	Exercises

	Hashes
	A Hash is a Mapping
	Common Operations on Hashes
	Hash as a Collection of Counters
	Looping and Hashes
	Reverse Lookup
	Testing for Existence
	Hash Keys Are Unique
	Hashes and Arrays
	Memos
	Hashes as Dispatch Tables
	Global Variables
	Debugging
	Glossary
	Exercises

	Case Study: Data Structure Selection
	The Ternary Conditional Operator
	The given ... when ``Switch'' Statement
	Multiple Conditionals with Junctions
	Subroutine Named and Optional Parameters
	Named Parameters
	Optional Parameters

	Word Frequency Analysis
	Random Numbers
	Word Histogram
	Most Common Words
	Optional Parameters
	Hash Subtraction
	Constructing New Operators
	Sets, Bags and Mixes
	Random Words
	Markov Analysis
	Data Structures
	Building Your Own Data Structures
	Linked Lists
	Trees
	Binary Heaps

	Debugging
	Glossary
	Exercises: Huffman Coding
	Variable-Length Codes
	The Frequency Table
	Building the Huffman Code



	II Moving Forward
	Classes and Objects
	Objects, Methods and Object-Oriented Programming
	Programmer-Defined Types
	Attributes
	Creating Methods
	Rectangles and Object Composition
	Instances as Return Values
	Inheritance
	The Pixel Class
	The MovablePoint Class
	Multiple Inheritance: Attractive, but Is It Wise?

	Roles and Composition
	Classes and Roles: An Example
	Role Composition and Code Reuse
	Roles, Classes, Objects, and Types

	Method Delegation
	Polymorphism
	Encapsulation
	Private Methods
	Constructing Objects with Private Attributes

	Interface and Implementation
	Object-Oriented Programming: A Tale
	The Fable of the Shepherd
	The Moral

	Debugging
	The Raku Debugger
	Getting Some Help
	Stepping Through the Code
	Stopping at the Right Place with Breakpoints
	Logging Information with Trace Points
	Stepping Through a Regex Match

	Glossary

	Regexes and Grammars
	A Brief Refresher
	Declarative Programming
	Captures
	Named Rules (a.k.a. Subrules)
	Grammars
	Grammar Inheritance
	Actions Objects
	A grammar for Parsing JSON
	The JSON Format
	Our JSON Sample
	Writing the JSON Grammar Step by Step
	The JSON Grammar
	Adding Actions

	Inheritance and Mutable Grammars
	Debugging
	Glossary
	Exercise: A Grammar for an Arithmetic Calculator

	Functional Programming in Raku
	Higher-Order Functions
	A Refresher on Functions as First-Class Objects
	Anonymous Subroutines and Lambdas
	Closures

	List Processing and Pipeline Programming
	Feed and Backward Feed Operators
	The Reduction Metaoperator
	The Hyperoperator
	The Cross (X) and Zip (Z) Operators
	List Operators, a Summary
	Creating New Operators

	Creating Your Own Map-Like Functions
	Custom Versions of map, grep, etc.
	Our Own Version of a Sort Function
	An Iterator Version of map
	An Iterator Version of grep

	The gather and take Construct
	Lazy Lists and the Sequence Operator
	The Sequence Operator
	Infinite Lists
	Using an Explicit Generator

	Currying and the Whatever Operator
	Creating a Curried Subroutine
	Currying an Existing Subroutine with the assuming Method
	Currying with the Whatever Star Parameter

	Using a Functional Programming Style
	The Merge Sort Algorithm
	A Non-Functional Implementation of Merge Sort
	A Functional Implementation of Merge Sort

	Debugging
	Glossary
	Exercise: Quick Sort

	Some Final Advice
	Make it Clear, Keep it Simple
	Dos and Don'ts
	Use Idioms
	What's Next?

	Solutions to the Exercises
	Exercises of Chapter 3: Functions and Subroutines
	Exercise 3.1: Subroutine right-justify (p. 46)
	Exercise 3.2: Subroutine do-twice (p. 46)
	Exercise 3.3: Subroutine print-grid (p. 47)

	Exercises of Chapter 4: Conditionals and Recursion
	Subroutine do-n-times, Exercise Suggested in Section 4.12 (p. 61)
	Exercise 4.1: Days, Hours, Minutes, and Seconds (p. 65)
	Exercise 4.2: Fermat's Theorem (p. 66)
	Exercise 4.3: Is it a Triangle? (p. 66)
	Exercise 4.4: The Fibonacci Numbers (p. 66)
	Exercise 4.5: The recurse Subroutine (p. 67)

	Exercises of Chapter 5: Fruitful Functions
	Compare, exercise at the end of Section 5.1 (p. 70)
	Hypotenuse, exercise at the end of Section 5.2 (p. 72)
	Chained Relational Operators(in Section 5.4)
	The Ackermann Function (Exercise 5.2)
	Palindromes (Exercise 5.3)
	Powers (Exercise 5.4)
	Finding the GCD of Two Numbers, Exercise 5.5 (p. 84)

	Exercises of Chapter 6 (Iteration)
	Exercise 6.1: Square Root (p. 96)
	Exercise 6.2: Pi Estimate (p. 96)

	Exercises of Chapter 7 (Strings)
	Exercise in Section 7.3: String Traversal (p. 104)
	Exercise in Section 7.3: The Ducklings (p. 104)
	Exercise in Section 7.3: Counting the Letters of a String (p. 104)
	Section 7.5: Simulating a Regex with a Loop (p. 106)
	Exercises in Subsection 7.7.8: Regex Exercises (p. 115)
	Exercise in Section 7.10: is-reverse Subroutine (p. 122)
	Exercise 7.1: Counting Letters (p. 123)
	Exercise 7.2: Lowercase Letters (p. 123)
	Exercise 7.3: Caesar's Cipher (p. 125)

	Exercises of Chapter 8 (Word Play)
	Exercise 8.7: Consecutive Double Letters (p. 136)
	Exercise 8.8: Palindromes in Odometers (p. 137)
	Exercise 8.9: Palindromes in Ages (p. 137)

	Exercises of Chapter 9 (Arrays and Lists)
	Exercise of Section 9.4: Implementing a Queue (p. 145)
	Exercise of Section 9.5: Other Ways to Modify an Array (p. 147)
	Exercise of Section 9.8: Mapping and Filtering the Elements of a List (p. 154)
	Exercise of Section 9.12: Advanced Sorting Techniques (p. 160)
	Exercise 9.1: Nested Sum (p. 162)
	Exercise 9.2: Cumulative Sum (p. 162)
	Exercise 9.3: Middle (p. 162)
	Exercise 9.4: Chop (p. 162)
	Exercise 9.5: Subroutine is-sorted (p. 163)
	Exercise 9.6: Subroutine is-anagram (p. 163)
	Exercise 9.7: Subroutine has-duplicates (p. 163)
	Exercise 9.8: Simulating the Birthday Paradox (p. 163)
	Exercise 9.9: Comparing push and unshift (p. 163)
	Exercise 9.10: Bisection Search in a List (p. 163)
	Exercise 9.11: Reverse Pairs (p. 164)
	Exercise 9.12: Interlocking Words (p. 164)

	Exercises of Chapter 10 (Hashes)
	Exercise at the end of Section 10.1: A hash Is a Mapping (p. 167)
	Exercise 10.1: Storing the Word List into a Hash (p. 181)
	Exercise 10.2: Memoizing the Ackermann Function (p. 181)
	Exercise 10.3: Finding Duplicates with a Hash (p. 181)
	Exercise 10.4: Rotate Pairs (p. 181)
	Exercise 10.5: Homophones (p. 181)

	Exercises of Chapter 11
	Exercise in Section 11.2: the given ... when Statement (p. 185)
	Exercise in Section 11.11: Constructing New Operators (p. 195)
	Exercise in Section 11.12: Sets, Bags and Mixes (p. 197)
	Exercise in Section 11.13: Random Words (p. 198)
	Exercise in Section 11.14: Markov Analysis (p. 200)
	Exercises on the Huffman Code in Section 11.19 (p. 208)

	Exercises of Chapter 13: Regexes and Grammars
	Exercise in Section 13.1: Getting the February Dates Right (p. 254)
	Exercise 13.12 (p. 269): A Grammar for an Arithmetic Calculator

	Exercises of Chapter 14: Functional Programming
	Exercise 14.10: Making a Functional Implementation of Quick Sort)




