-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathreduce.jl
443 lines (370 loc) · 11.1 KB
/
reduce.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
## reductions ##
###### Functors ######
# Note that functors are merely used as internal machinery to enhance code reuse.
# They are not exported.
# When function arguments can be inlined, the use of functors can be removed.
abstract Func{N}
type IdFun <: Func{1} end
type AbsFun <: Func{1} end
type Abs2Fun <: Func{1} end
type ExpFun <: Func{1} end
type LogFun <: Func{1} end
type AddFun <: Func{2} end
type MulFun <: Func{2} end
type AndFun <: Func{2} end
type OrFun <: Func{2} end
type MaxFun <: Func{2} end
type MinFun <: Func{2} end
evaluate(::IdFun, x) = x
evaluate(::AbsFun, x) = abs(x)
evaluate(::Abs2Fun, x) = abs2(x)
evaluate(::ExpFun, x) = exp(x)
evaluate(::LogFun, x) = log(x)
evaluate(f::Callable, x) = f(x)
evaluate(::AddFun, x, y) = x + y
evaluate(::MulFun, x, y) = x * y
evaluate(::AndFun, x, y) = x & y
evaluate(::OrFun, x, y) = x | y
evaluate(::MaxFun, x, y) = scalarmax(x, y)
evaluate(::MinFun, x, y) = scalarmin(x, y)
evaluate(f::Callable, x, y) = f(x, y)
###### Generic (map)reduce functions ######
# r_promote: promote x to the type of reduce(op, [x])
r_promote(op, x) = x
r_promote(::AddFun, x) = x + zero(x)
r_promote(::MulFun, x) = x * one(x)
## foldl && mapfoldl
function mapfoldl_impl(f, op, v0, itr, i)
if done(itr, i)
return v0
else
(x, i) = next(itr, i)
v = evaluate(op, v0, evaluate(f, x))
while !done(itr, i)
(x, i) = next(itr, i)
v = evaluate(op, v, evaluate(f, x))
end
return v
end
end
mapfoldl(f, op, v0, itr) = mapfoldl_impl(f, op, v0, itr, start(itr))
function mapfoldl(f, op::Function, v0, itr)
is(op, +) ? mapfoldl(f, AddFun(), v0, itr) :
is(op, *) ? mapfoldl(f, MulFun(), v0, itr) :
is(op, &) ? mapfoldl(f, AndFun(), v0, itr) :
is(op, |) ? mapfoldl(f, OrFun(), v0, itr) :
mapfoldl_impl(f, op, v0, itr, start(itr))
end
function mapfoldl(f, op, itr)
i = start(itr)
if done(itr, i)
return Base.mr_empty(f, op, eltype(itr))
end
(x, i) = next(itr, i)
v0 = evaluate(f, x)
mapfoldl_impl(f, op, v0, itr, i)
end
foldl(op, v0, itr) = mapfoldl(IdFun(), op, v0, itr)
foldl(op, itr) = mapfoldl(IdFun(), op, itr)
## foldr & mapfoldr
function mapfoldr_impl(f, op, v0, itr, i::Integer)
if i == 0
return v0
else
x = itr[i]
v = evaluate(op, evaluate(f, x), v0)
while i > 1
x = itr[i -= 1]
v = evaluate(op, evaluate(f, x), v)
end
return v
end
end
mapfoldr(f, op, v0, itr) = mapfoldr_impl(f, op, v0, itr, endof(itr))
mapfoldr(f, op, itr) = (i = endof(itr); mapfoldr_impl(f, op, evaluate(f, itr[i]), itr, i-1))
foldr(op, v0, itr) = mapfoldr(IdFun(), op, v0, itr)
foldr(op, itr) = mapfoldr(IdFun(), op, itr)
## reduce & mapreduce
# mapreduce_***_impl require ifirst < ilast
function mapreduce_seq_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int)
@inbounds fx1 = evaluate(f, A[ifirst])
@inbounds fx2 = evaluate(f, A[ifirst+=1])
@inbounds v = evaluate(op, fx1, fx2)
while ifirst < ilast
@inbounds fx = evaluate(f, A[ifirst+=1])
v = evaluate(op, v, fx)
end
return v
end
function mapreduce_pairwise_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int, blksize::Int)
if ifirst + blksize > ilast
return mapreduce_seq_impl(f, op, A, ifirst, ilast)
else
imid = (ifirst + ilast) >>> 1
v1 = mapreduce_seq_impl(f, op, A, ifirst, imid)
v2 = mapreduce_seq_impl(f, op, A, imid+1, ilast)
return evaluate(op, v1, v2)
end
end
mapreduce(f, op, itr) = mapfoldl(f, op, itr)
mapreduce(f, op, v0, itr) = mapfoldl(f, op, v0, itr)
mapreduce_impl(f, op, A::AbstractArray, ifirst::Int, ilast::Int) =
mapreduce_seq_impl(f, op, A, ifirst, ilast)
# handling empty arrays
mr_empty(f, op, T) = error("Reducing over an empty array is not allowed.")
# use zero(T)::T to improve type information when zero(T) is not defined
mr_empty(::IdFun, op::AddFun, T) = r_promote(op, zero(T)::T)
mr_empty(::AbsFun, op::AddFun, T) = r_promote(op, abs(zero(T)::T))
mr_empty(::Abs2Fun, op::AddFun, T) = r_promote(op, abs2(zero(T)::T))
mr_empty(::IdFun, op::MulFun, T) = r_promote(op, one(T)::T)
mr_empty(::AbsFun, op::MaxFun, T) = abs(zero(T)::T)
mr_empty(::Abs2Fun, op::MaxFun, T) = abs2(zero(T)::T)
mr_empty(f, op::AndFun, T) = true
mr_empty(f, op::OrFun, T) = false
function _mapreduce{T}(f, op, A::AbstractArray{T})
n = length(A)
if n == 0
return mr_empty(f, op, T)
elseif n == 1
return r_promote(op, evaluate(f, A[1]))
elseif n < 16
@inbounds fx1 = evaluate(f, A[1])
@inbounds fx2 = evaluate(f, A[2])
s = evaluate(op, fx1, fx2)
i = 2
while i < n
@inbounds fx = evaluate(f, A[i+=1])
s = evaluate(op, s, fx)
end
return s
else
return mapreduce_impl(f, op, A, 1, n)
end
end
mapreduce(f, op, A::AbstractArray) = _mapreduce(f, op, A)
mapreduce(f, op, a::Number) = evaluate(f, a)
function mapreduce(f, op::Function, A::AbstractArray)
is(op, +) ? _mapreduce(f, AddFun(), A) :
is(op, *) ? _mapreduce(f, MulFun(), A) :
is(op, &) ? _mapreduce(f, AndFun(), A) :
is(op, |) ? _mapreduce(f, OrFun(), A) :
_mapreduce(f, op, A)
end
reduce(op, v0, itr) = mapreduce(IdFun(), op, v0, itr)
reduce(op, itr) = mapreduce(IdFun(), op, itr)
reduce(op, a::Number) = a
###### Specific reduction functions ######
## sum
function mapreduce_seq_impl(f, op::AddFun, a::AbstractArray, ifirst::Int, ilast::Int)
@inbounds if ifirst + 6 >= ilast # length(a) < 8
i = ifirst
s = evaluate(f, a[i]) + evaluate(f, a[i+1])
i = i+1
while i < ilast
s += evaluate(f, a[i+=1])
end
return s
else # length(a) >= 8, manual unrolling
s1 = evaluate(f, a[ifirst]) + evaluate(f, a[ifirst + 4])
s2 = evaluate(f, a[ifirst + 1]) + evaluate(f, a[ifirst + 5])
s3 = evaluate(f, a[ifirst + 2]) + evaluate(f, a[ifirst + 6])
s4 = evaluate(f, a[ifirst + 3]) + evaluate(f, a[ifirst + 7])
i = ifirst + 8
il = ilast - 3
while i <= il
s1 += evaluate(f, a[i])
s2 += evaluate(f, a[i+1])
s3 += evaluate(f, a[i+2])
s4 += evaluate(f, a[i+3])
i += 4
end
while i <= ilast
s1 += evaluate(f, a[i])
i += 1
end
return s1 + s2 + s3 + s4
end
end
# Note: sum_seq uses four accumulators, so each accumulator gets at most 256 numbers
sum_pairwise_blocksize(f) = 1024
# This appears to show a benefit from a larger block size
sum_pairwise_blocksize(::Abs2Fun) = 4096
mapreduce_impl(f, op::AddFun, A::AbstractArray, ifirst::Int, ilast::Int) =
mapreduce_pairwise_impl(f, op, A, ifirst, ilast, sum_pairwise_blocksize(f))
sum(f::Union(Callable,Func{1}), a) = mapreduce(f, AddFun(), a)
sum(a) = mapreduce(IdFun(), AddFun(), a)
sum(a::AbstractArray{Bool}) = countnz(a)
sumabs(a) = mapreduce(AbsFun(), AddFun(), a)
sumabs2(a) = mapreduce(Abs2Fun(), AddFun(), a)
# Kahan (compensated) summation: O(1) error growth, at the expense
# of a considerable increase in computational expense.
function sum_kbn{T<:FloatingPoint}(A::AbstractArray{T})
n = length(A)
if n == 0
return sumzero(T)
end
c = zero(T)
s = A[1] + c
for i in 2:n
@inbounds Ai = A[i]
t = s + Ai
if abs(s) >= abs(Ai)
c += ((s-t) + Ai)
else
c += ((Ai-t) + s)
end
s = t
end
s + c
end
## prod
prod(f::Union(Callable,Func{1}), a) = mapreduce(f, MulFun(), a)
prod(a) = mapreduce(IdFun(), MulFun(), a)
prod(A::AbstractArray{Bool}) =
error("use all() instead of prod() for boolean arrays")
## maximum & minimum
function mapreduce_impl(f, op::MaxFun, A::AbstractArray, first::Int, last::Int)
# locate the first non NaN number
v = evaluate(f, A[first])
i = first + 1
while v != v && i <= last
@inbounds v = evaluate(f, A[i])
i += 1
end
while i <= last
@inbounds x = evaluate(f, A[i])
if x > v
v = x
end
i += 1
end
v
end
function mapreduce_impl(f, op::MinFun, A::AbstractArray, first::Int, last::Int)
# locate the first non NaN number
v = evaluate(f, A[first])
i = first + 1
while v != v && i <= last
@inbounds v = evaluate(f, A[i])
i += 1
end
while i <= last
@inbounds x = evaluate(f, A[i])
if x < v
v = x
end
i += 1
end
v
end
maximum(f::Union(Callable,Func{1}), a) = mapreduce(f, MaxFun(), a)
minimum(f::Union(Callable,Func{1}), a) = mapreduce(f, MinFun(), a)
maximum(a) = mapreduce(IdFun(), MaxFun(), a)
minimum(a) = mapreduce(IdFun(), MinFun(), a)
maxabs(a) = mapreduce(AbsFun(), MaxFun(), a)
minabs(a) = mapreduce(AbsFun(), MinFun(), a)
## extrema
extrema(r::Range) = (minimum(r), maximum(r))
extrema(x::Real) = (x, x)
function extrema(itr)
s = start(itr)
done(itr, s) && error("argument is empty")
(v, s) = next(itr, s)
while v != v && !done(itr, s)
(x, s) = next(itr, s)
v = x
end
vmin = v
vmax = v
while !done(itr, s)
(x, s) = next(itr, s)
if x > vmax
vmax = x
elseif x < vmin
vmin = x
end
end
return (vmin, vmax)
end
## all & any
function mapfoldl(f, ::AndFun, itr)
for x in itr
if !evaluate(f, x)
return false
end
end
return true
end
function mapfoldl(f, ::OrFun, itr)
for x in itr
if evaluate(f, x)
return true
end
end
return false
end
function mapreduce_impl(f, op::AndFun, A::AbstractArray, ifirst::Int, ilast::Int)
while ifirst <= ilast
@inbounds x = A[ifirst]
if !evaluate(f, x)
return false
end
ifirst += 1
end
return true
end
function mapreduce_impl(f, op::OrFun, A::AbstractArray, ifirst::Int, ilast::Int)
while ifirst <= ilast
@inbounds x = A[ifirst]
if evaluate(f, x)
return true
end
ifirst += 1
end
return false
end
all(a) = mapreduce(IdFun(), AndFun(), a)
any(a) = mapreduce(IdFun(), OrFun(), a)
all(pred::Union(Callable,Func{1}), a) = mapreduce(pred, AndFun(), a)
any(pred::Union(Callable,Func{1}), a) = mapreduce(pred, OrFun(), a)
## in & contains
immutable EqX{T} <: Func{1}
x::T
end
EqX{T}(x::T) = EqX{T}(x)
evaluate(f::EqX, y) = (y == f.x)
in(x, itr) = any(EqX(x), itr)
const ∈ = in
∉(x, itr)=!∈(x, itr)
∋(itr, x)= ∈(x, itr)
∌(itr, x)=!∋(itr, x)
function contains(eq::Function, itr, x)
for y in itr
if eq(y, x)
return true
end
end
return false
end
## countnz & count
function count(pred::Union(Function,Func{1}), itr)
n = 0
for x in itr
if evaluate(pred, x)
n += 1
end
end
return n
end
function count(pred::Union(Function,Func{1}), a::AbstractArray)
n = 0
for i = 1:length(a)
@inbounds if evaluate(pred, a[i])
n += 1
end
end
return n
end
type NotEqZero <: Func{1} end
evaluate(NotEqZero, x) = (x != 0)
countnz(a) = count(NotEqZero(), a)