from copy import deepcopy from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.filters.filter import InputFilter from rl_coach.filters.reward import RewardRescaleFilter from rl_coach.graph_managers.batch_rl_graph_manager import BatchRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.schedules import LinearSchedule from rl_coach.memories.episodic import EpisodicExperienceReplayParameters DATASET_SIZE = 40000 #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000000) schedule_params.steps_between_evaluation_periods = TrainingSteps(1) schedule_params.evaluation_steps = EnvironmentEpisodes(10) schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE) ######### # Agent # ######### # TODO add a preset which uses a dataset to train a BatchRL graph. e.g. save a cartpole dataset in a csv format. agent_params = DDQNAgentParameters() agent_params.network_wrappers['main'].batch_size = 128 # DQN params # agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(100) # For making this become Fitted Q-Iteration we can keep the targets constant for the entire dataset size - agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps( DATASET_SIZE / agent_params.network_wrappers['main'].batch_size) agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0) agent_params.algorithm.discount = 0.98 # agent_params.algorithm.discount = 1.0 # NN configuration agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False agent_params.network_wrappers['main'].l2_regularization = 0.0001 agent_params.network_wrappers['main'].softmax_temperature = 0.2 # agent_params.network_wrappers['main'].learning_rate_decay_rate = 0.95 # agent_params.network_wrappers['main'].learning_rate_decay_steps = int(DATASET_SIZE / # agent_params.network_wrappers['main'].batch_size) # reward model params agent_params.network_wrappers['reward_model'] = deepcopy(agent_params.network_wrappers['main']) agent_params.network_wrappers['reward_model'].learning_rate = 0.0001 agent_params.network_wrappers['reward_model'].l2_regularization = 0 # ER size agent_params.memory = EpisodicExperienceReplayParameters() agent_params.memory.max_size = (MemoryGranularity.Transitions, DATASET_SIZE) # E-Greedy schedule agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000) agent_params.exploration.evaluation_epsilon = 0 agent_params.input_filter = InputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1/200.)) ################ # Environment # ################ env_params = GymVectorEnvironment(level='CartPole-v0') ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 150 preset_validation_params.max_episodes_to_achieve_reward = 2000 graph_manager = BatchRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=VisualizationParameters(dump_signals_to_csv_every_x_episodes=1), preset_validation_params=preset_validation_params, reward_model_num_epochs=30, train_to_eval_ratio=0.8)