Skip to content

DarrenQu/SiCP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SiCP: Simultaneous Individual and Cooperative Perception for 3D Object Detection in Connected and Automated Vehicles

paper

SiCP is accepted to IROS 2024.

SiCP Architecture

image

Complementary Feature Fusion

image

Features

Dataset Preparation

  • Download the OPV2V and V2V4Real datasets.
  • After downloading the dataset, place the data into the following structure.
├── opv2v_data_dumping
│   ├── train
│   │   │── 2021_08_22_22_30_58
│   ├── validate
│   ├── test

Installation

1. download SiCP github to your local folder

git clone https://github.com/DarrenQu/SiCP.git
cd SiCP

2. create a conda environment (python >= 3.7)

conda create -n sicp python=3.7
conda activate sicp

3. Pytorch Installation (>= 1.12.0 Required)

conda install pytorch==1.12.0 torchvision==0.13.0 cudatoolkit=11.3 -c pytorch -c conda-forge

4. spconv 2.x Installation (if you are using CUDA 11.3)

pip install spconv-cu113

5. Install other dependencies

pip install -r requirements.txt
python setup.py develop

6. Install bbx nms calculation cuda version

python opencood/utils/setup.py build_ext --inplace

Train the model

To train the model, run the following command.

python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE} [--model_dir  ${CHECKPOINT_FOLDER}]
  • hypes_yaml: the path of configuration file, e.g. opencood/hypes_yaml/point_pillar_sicp.yaml.
  • model_dir(optional): the path of checkpoint.
  • More explaination refer to this repo.

Test the model

First, ensure that the validation_dir parameter in the config.yaml file, located in your checkpoint folder, is set to the path of the testing dataset, for example, opv2v_data_dumping/test.

python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} [--show_vis] [--show_sequence]
  • model_dir: the path of saved model.
  • fusion_method: about the fusion strategy, 'early', 'late', and 'intermediate'.
  • show_vis: whether to visualize the detection overlay with point cloud.
  • show_sequence: visualize in a video stream.

Acknowledgement

This project is impossible without these excellent codebases OpenCOOD, CoAlign and V2V4Real.

Citation

@article{qu2023sicp,
  title={SiCP: Simultaneous Individual and Cooperative Perception for 3D Object Detection in Connected and Automated Vehicles},
  author={Qu, Deyuan and Chen, Qi and Bai, Tianyu and Qin, Andy and Lu, Hongsheng and Fan, Heng and Fu, Song and Yang, Qing},
  journal={arXiv preprint arXiv:2312.04822},
  year={2023}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published