Skip to content

Latest commit

 

History

History

D3S_MU

If you failed to install and run this tracker, please email me (dkn2014@mail.dlut.edu.cn)

Introduction

This is a python-implemented visual object tracking algorithm. Use meta-updater to control the update of D3S.

Prerequisites

  • python 3.7
  • ubuntu 16.04
  • cuda-9.0

Installation

  1. Clone the GIT repository:
 $ git clone https://github.com/Daikenan/LTMU.git
  1. Clone the submodules.
    In the repository directory, run the commands:
   $ git submodule init  
   $ git submodule update
  1. Run the install script.
bash install.sh PATH/TO/YOUR/anaconda3 D3S_MU

4.Download models Download [metric model] [D3S model]and put in the following path:

 utils/metric_net/metric_model/metric_model.pt
 D3S_MU/pytracking/networks/SegmNet.pth.tar
  1. Run the demo script to test the tracker:
cd path/to/D3S_MU
source activate D3S_MU
python Demo.py

Training tutorial

Refer to ATOM_MU.