-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathtest_rgcn.py
52 lines (42 loc) · 2.01 KB
/
test_rgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import numpy as np
import torch.nn.functional as F
from deeprobust.graph.defense import RGCN
from deeprobust.graph.utils import *
from deeprobust.graph.data import Dataset
from deeprobust.graph.data import PrePtbDataset
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=15, help='Random seed.')
parser.add_argument('--dataset', type=str, default='cora', choices=['cora', 'cora_ml', 'citeseer', 'polblogs', 'pubmed'], help='dataset')
parser.add_argument('--ptb_rate', type=float, default=0.05, help='pertubation rate')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
print('cuda: %s' % args.cuda)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Here the random seed is to split the train/val/test data,
# we need to set the random seed to be the same as that when you generate the perturbed graph
# data = Dataset(root='/tmp/', name=args.dataset, setting='nettack', seed=15)
# Or we can just use setting='prognn' to get the splits
data = Dataset(root='/tmp/', name=args.dataset, setting='prognn')
adj, features, labels = data.adj, data.features, data.labels
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# load pre-attacked graph by Zugner: https://github.com/danielzuegner/gnn-meta-attack
print('==================')
print('=== load graph perturbed by Zugner metattack (under prognn splits) ===')
perturbed_data = PrePtbDataset(root='/tmp/',
name=args.dataset,
attack_method='meta',
ptb_rate=args.ptb_rate)
perturbed_adj = perturbed_data.adj
# Setup RGCN Model
model = RGCN(nnodes=perturbed_adj.shape[0], nfeat=features.shape[1], nclass=labels.max()+1,
nhid=32, device=device)
model = model.to(device)
model.fit(features, perturbed_adj, labels, idx_train, idx_val, train_iters=200, verbose=True)
# You can use the inner function of model to test
model.test(idx_test)