-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpermutation.py
165 lines (132 loc) · 5.43 KB
/
permutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
import torch.nn.functional as F
def apply_assignment(elements, assignment):
""" Apply an assignment on a set of elements to re-order them.
"""
# expand elements over the positions it can take
elements = elements.unsqueeze(3)
# expand assignment over the elements it works over
dims_to_append = elements.dim() - assignment.dim()
assignment = assignment.view(*assignment.size(), *([1] * dims_to_append))
# weighted sum over positions
x = assignment * elements
x = x.sum(dim=2)
return x
def calculate_assignment(cost_matrix, assignment=None, lr=1, temp=1, steps=1, size_2d=None):
""" Compute a good assignment for the given cost matrix.
"""
# initialise assignment if necessary
if assignment is None:
size = cost_matrix.size(0), 1, cost_matrix.size(2), cost_matrix.size(3)
assignment = cost_matrix.new(*size).fill_(0)
else:
size = assignment.size()
# we don't care about scale of cost matrix, so normalise
cost_matrix = cost_matrix / cost_matrix.view(*cost_matrix.size()[:2], -1).norm(dim=-1, keepdim=True).unsqueeze(-1).clamp(min=1e-10)
if not size_2d:
normalise = sinkhorn
compute_grad = assignment_grad
else:
normalise = sinkhorn_2d
compute_grad = assignment_grad_2d
assignment = assignment.view(*size[:-1], *size_2d)
# gradient descent
for _ in range(steps):
assignment_normed = normalise(assignment, temp=temp, steps=4)
grad = compute_grad(assignment_normed, cost_matrix)
assignment = assignment - lr * grad
assignment = normalise(assignment, temp=temp, steps=4)
if size_2d:
assignment = assignment.view(*assignment.size()[:-2], -1)
return assignment
def assignment_grad_2d(assignment, cost_matrix):
# assignment :: Tensor(n, 1, i, row, col)
# assume cost matrix has two channels, one for row costs and one for col costs
row_cost_matrix = cost_matrix[:, :1, ...].contiguous()
col_cost_matrix = cost_matrix[:, 1:, ...].contiguous()
total_grad = assignment.new(assignment.size()).fill_(0)
for idx in range(assignment.size(-1)):
row_assignment = assignment[..., idx, :]
col_assignment = assignment[..., :, idx]
# to assign to a row, need to compare between cols
row_grad = assignment_grad(row_assignment, col_cost_matrix)
# to assign to a col, need to compare between rows
col_grad = assignment_grad(col_assignment, row_cost_matrix)
total_grad[..., idx, :] = total_grad[..., idx, :] + row_grad
total_grad[..., :, idx] = total_grad[..., :, idx] + col_grad
return total_grad
def assignment_grad(assignment, cost_matrix, local=False):
""" Compute the gradient of the total cost wrt an assignment when using the given cost matrix.
"""
# dim=-2 and 2 is an operation over rows
# dim=-1 and 3 is and operation over columns
# Input shapes:
# assignment :: Tensor(n, 1, i, k) or Tensor(n, 1, p, q)
# cost_matrix :: Tensor(n, 1, i, j) or Tensor(n, 1, p, j)
# compute the right term first
zero_padding = assignment.new(assignment.size()[:-1] + (1,)).fill_(0)
if not local:
cumu = assignment.cumsum(dim=-1)
reverse_cumu = assignment.flip([3]).cumsum(dim=-1).flip([3])
else:
cumu = assignment
reverse_cumu = assignment
k_lt_q = torch.cat([zero_padding, cumu], dim=-1)[..., :-1]
k_gt_q = torch.cat([reverse_cumu, zero_padding], dim=-1)[..., 1:]
weight = k_gt_q - k_lt_q # :: Tensor(n, 1, j, q)
weight = weight.squeeze(dim=1) # :: Tensor(n, p, j)
cost_matrix = cost_matrix.squeeze(dim=1) # :: Tensor(n, j, q)
grad = 2 * torch.bmm(cost_matrix, weight) # :: Tensor(n, p, q)
return grad.unsqueeze(dim=1) # :: Tensor(n, 1, p, q)
def sinkhorn_2d(x, steps=1, temp=1):
# flatten the 2d dim to one for normalisation
original_size = x.size()
x = x.view(*original_size[:-2], -1)
x = sinkhorn(x, steps=steps, temp=temp)
# undo the flattening
x = x.view(original_size)
return x
def sinkhorn(x, steps=1, temp=1):
""" Apply the Sinkhorn operator with an exp in front on the last two dimensions.
"""
x = F.softmax(x / temp, dim=-1)
for _ in range(steps):
x = x / x.sum(dim=-1, keepdim=True).clamp(min=1e-12)
x = x / x.sum(dim=-2, keepdim=True).clamp(min=1e-12)
return x
def outer(a, b=None):
if b is None:
b = a
size_a = tuple(a.size()) + (b.size()[-1],)
size_b = tuple(b.size()) + (a.size()[-1],)
a = a.unsqueeze(dim=-1).expand(*size_a)
b = b.unsqueeze(dim=-2).expand(*size_b)
return a, b
class Comparator(nn.Module):
def __init__(self, skew):
super().__init__()
self.skew = skew
def forward(self, x):
a, b = outer(x)
x = torch.cat([a, b], dim=1)
y = torch.cat([b, a], dim=1)
skew = self.skew(x) - self.skew(y)
return skew
class LinearAssign(nn.Module):
def __init__(self, model):
super().__init__()
self.f = model
def forward(self, x):
x = self.f(x)
return x.unsqueeze(1).transpose(-1, -2)
class Conv1(nn.Module):
def __init__(self, in_features, out_features, **kwargs):
super().__init__()
self.conv = nn.Conv1d(in_features, out_features, 1, **kwargs)
def forward(self, x):
n, c, *s = x.size()
x = x.view(n, c, -1)
x = self.conv(x)
x = x.view(n, -1, *s)
return x