import tensorflow as tf import numpy as np import pickle def rodrigues(r): theta = tf.norm(r, axis=(1, 2), keepdims=True) theta = tf.maximum(theta, 1e-8) r_hat = r / theta cos = tf.cos(theta) z_stick = tf.zeros(theta.get_shape().as_list()[0], dtype=tf.float32) m = tf.stack( (z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick), axis=1) m = tf.reshape(m, (-1, 3, 3)) i_cube = tf.expand_dims(tf.eye(3, dtype=tf.float32), axis=0) + tf.zeros( (theta.get_shape().as_list()[0], 3, 3), dtype=tf.float32) A = tf.transpose(r_hat, (0, 2, 1)) B = r_hat dot = tf.matmul(A, B) R = cos * i_cube + (1 - cos) * dot + tf.sin(theta) * m return R def with_zeros(x): return tf.concat((x, tf.constant([[0.0, 0.0, 0.0, 1.0]], dtype=tf.float32)), axis=0) def pack(x): return tf.concat((tf.zeros((x.get_shape().as_list()[0], 4, 3), dtype=tf.float32), x), axis=2) def smpl_model(model_path, betas, pose, trans): with open(model_path, 'rb') as f: params = pickle.load(f) J_regressor = tf.constant(np.array(params['J_regressor'].todense(), dtype=np.float32)) weights = tf.constant(params['weights'], dtype=np.float32) posedirs = tf.constant(params['posedirs'], dtype=np.float32) v_template = tf.constant(params['v_template'], dtype=np.float32) shapedirs = tf.constant(params['shapedirs'], dtype=np.float32) f = params['f'] kintree_table = params['kintree_table'] id_to_col = {kintree_table[1, i]: i for i in range(kintree_table.shape[1])} parent = { i: id_to_col[kintree_table[0, i]] for i in range(1, kintree_table.shape[1]) } v_shaped = tf.tensordot(shapedirs, betas, axes=[[2], [0]]) + v_template J = tf.matmul(J_regressor, v_shaped) pose_cube = tf.reshape(pose, (-1, 1, 3)) R_cube_big = rodrigues(pose_cube) R_cube = R_cube_big[1:] I_cube = tf.expand_dims(tf.eye(3, dtype=tf.float32), axis=0) + tf.zeros((R_cube.get_shape()[0], 3, 3), dtype=tf.float32) lrotmin = tf.squeeze(tf.reshape((R_cube - I_cube), (-1, 1))) v_posed = v_shaped + tf.tensordot(posedirs, lrotmin, axes=[[2], [0]]) pose = tf.reshape(pose, (-1, 3)) results = [] results.append(with_zeros(tf.concat((R_cube_big[0], tf.reshape(J[0, :], (3, 1))), axis=1))) for i in range(1, kintree_table.shape[1]): results.append(tf.matmul(results[parent[i]], with_zeros(tf.concat((R_cube_big[i], tf.reshape(J[i, :] - J[parent[i], :], (3, 1))), axis=1)))) stacked = tf.stack(results, axis=0) results = stacked - pack(tf.matmul(stacked, tf.reshape(tf.concat((J, tf.zeros((24, 1), dtype=tf.float32)), axis=1), (24, 4, 1)))) T = tf.tensordot(weights, results, axes=((1), (0))) rest_shape_h = tf.concat((v_posed, tf.ones((v_posed.get_shape().as_list()[0], 1), dtype=tf.float32)), axis=1) v = tf.matmul(T, tf.reshape(rest_shape_h, (-1, 4, 1))) v = tf.reshape(v, (-1, 4))[:, :3] result = v + tf.reshape(trans, (1, 3)) return result, f if __name__ == '__main__': pose_size = 72 beta_size = 10 np.random.seed(9608) pose = (np.random.rand(pose_size) - 0.5) * 0.4 betas = (np.random.rand(beta_size) - 0.5) * 0.06 trans = np.zeros(3) pose = tf.constant(pose, dtype=tf.float32) betas = tf.constant(betas, dtype=tf.float32) trans = tf.constant(trans, dtype=tf.float32) output, faces = smpl_model('./model.pkl', betas, pose, trans) sess = tf.Session() result = sess.run(output) outmesh_path = './smpl_tf.obj' with open(outmesh_path, 'w') as fp: for v in result: fp.write('v %f %f %f\n' % (v[0], v[1], v[2])) for f in faces + 1: fp.write('f %d %d %d\n' % (f[0], f[1], f[2]))