Skip to content

lmqfly/Geometry-Deep-Learning-for-Drug-Discovery

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 

Repository files navigation

 👏Geometry Deep Learning for Drug Discovery and Life Science

contributing-image

💡Related to Geometric Deep Learning for Drug discovery and Life Science.

💡Related review paper has been accepted by Expert System With Applications [Paper].

🔔Updating ...

Recommendations and references

Generative AI and Deep Learning for molecular/drug design
https://github.com/AspirinCode/papers-for-molecular-design-using-DL

List of papers about Proteins Design using Deep Learning
https://github.com/Peldom/papers_for_protein_design_using_DL

Menu

Reviews

  • A Systematic Survey of Chemical Pre-trained Models [IJCAI 2023]
    [Paper]

  • Structure-based drug design with geometric deep learning[2023]
    [Paper]

  • MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design[2022]
    [Paper]

  • Geometrically Equivariant Graph Neural Networks: A Survey[2022]
    [Paper]

  • Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges[2021]
    [Paper]

  • Geometric deep learning on molecular representations[2021]
    [Paper]

Datasets and Benchmarks

Datasets

QM dataset

http://quantum-machine.org/datasets/

Qmugs

https://www.nature.com/articles/s41597-022-01390-7

GEOM

https://www.nature.com/articles/s41597-022-01288-4

OC20

https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md

PDBBIND

http://pdbbind.org.cn/

DIPS

https://github.com/drorlab/DIPS

PCQM4Mv2

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/

CrossDocked2020

https://github.com/gnina/models/tree/master/data

Benchmarks

Leaderboard for PCQM4Mv2

https://ogb.stanford.edu/docs/lsc/leaderboards/#pcqm4mv2

Molecular property prediction

  • A universal framework for accurate and efficient geometric deep learning of molecular systems [Nature Scientific Reports 2023]
    Shuo Zhang, Yang Liu, Lei Xie.
    Paper | code

  • Uncertainty Estimation for Molecules: Desiderata and Methods [ICML 2023]
    Tom Wollschläger, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Günnemann.
    Paper

  • Quantum 3D Graph Learning with Applications to Molecule Embedding [ICML 2023]
    Ge Yan, Huaijin Wu, Junchi Yan.
    Paper

  • Geometry-Complete Perceptron Networks for 3D Molecular Graphs [AAAI 2023]
    Alex Morehead, Jianlin Cheng.
    Paper | code

  • Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs [AAAI 2023]
    Fang Wu, Dragomir Radev, Stan Z. Li.
    Paper | code

  • ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs [NeurIPS 2022]
    Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, Shuiwang Ji.
    Paper | code

  • Recipe for a General, Powerful, Scalable Graph Transformer [NeurIPS 2022]
    Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini.
    Paper | code

  • GPS++: An Optimised Hybrid MPNN/Transformer for Molecular Property Prediction [2022]
    Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, Deniz Beker, Ladislav Rampášek, Dominique Beaini.
    Paper | code

  • Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets [2022]
    Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu, Di He, Tie-Yan Liu.
    Paper | code

  • Spherical message passing for 3d graph networks [ICLR 2022]
    Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, Shuiwang Ji.
    Paper | code

  • TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials [ICLR 2022]
    Philipp Thölke, Gianni De Fabritiis.
    Paper | code

  • Equivariant Graph Mechanics Networks with Constraints [ICLR 2022]
    Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, Junzhou Huang.
    Paper | code

  • Geometric and Physical Quantities Improve E(3) Equivariant Message Passing [ICLR 2022]
    Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, Max Welling.
    Paper

  • GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction [AAAI 2022]
    Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, Hui Xiong.
    Paper | code

  • Geometric Transformer for End-to-End Molecule Properties Prediction [IJCAI 2022]
    Yoni Choukroun, Lior Wolf.
    Paper | code

  • E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials [Nature Communications 2021]
    Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, Boris Kozinsky.
    Paper | code

  • Equivariant message passing for the prediction of tensorial properties and molecular spectra [ICML 2021]
    Kristof T. Schütt, Oliver T. Unke, Michael Gastegger.
    Paper

  • E (n) equivariant graph neural networks [ICML 2021]
    Victor Garcia Satorras, Emiel Hoogeboom, Max Welling.
    Paper | code

  • GemNet: Universal Directional Graph Neural Networks for Molecules [ICLR 2021]
    Johannes Gasteiger, Florian Becker, Stephan Günnemann.
    Paper | code

  • Spatial Graph Convolutional Networks [ICONIP 2020]
    Tomasz Danel, Przemysław Spurek, Jacek Tabor, Marek Śmieja, Łukasz Struski, Agnieszka Słowik, Łukasz Maziarka.
    Paper | code

  • Directional Message Passing for Molecular Graphs [ICLR 2020]
    Johannes Gasteiger, Janek Groß, Stephan Günnemann.
    Paper | code

  • Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties [2020]
    Benjamin Kurt Miller, Mario Geiger, Tess E. Smidt, Frank Noé.
    Paper | code

  • Cormorant: Covariant molecular neural networks [NeurIPS 2019]
    Brandon Anderson, Truong-Son Hy, Risi Kondor.
    Paper | code

  • Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds [2018]
    Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley.
    Paper | code

  • SchNet: A continuous-filter convolutional neural network for modeling quantum interactions [NeurIPS 2017]
    Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller.
    Paper | code

Intermolecular interaction

Binding site prediction

  • ScanNet: an interpretable geometric deeplearning model for structure-based protein binding site prediction [Nature Methods 2022]
    Tubiana, Jérôme, Schneidman-Duhovny, Dina, Wolfson, Haim J.
    Paper | code

  • Geometric Transformers for Protein Interface Contact Prediction [ICLR 2022]
    Alex Morehead, Chen Chen, Jianlin Cheng.
    Paper | code

  • Fast end-to-end learning on protein surfaces [CVPR 2021]
    Freyr Sverrisson, Jean Feydy, Bruno E Correia, Michael M Bronstein.
    Paper | code

  • Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning [Nature Methods 2019]
    Gainza et al.
    Paper | code

  • DeepSite: protein-binding site predictor using 3D-convolutional neural networks [Bioinformatics 2017]
    Jiménez et al.
    Paper

Binding affinity prediction

  • A universal framework for accurate and efficient geometric deep learning of molecular systems [Nature Scientific Reports 2023]
    Shuo Zhang, Yang Liu, Lei Xie.
    Paper | code

  • Geometric Interaction Graph Neural Network for Predicting Protein-Ligand Binding Affinities from 3D Structures (GIGN). [JPCL 2023]
    Ziduo Yang, Weihe Zhong, Qiujie Lv, Tiejun Dong, Calvin Yu-Chian Chen.
    Paper | code

  • Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation [JCIM 2019]
    Jaechang Lim, Seongok Ryu, Kyubyong Park, Yo Joong Choe, Jiyeon Ham, Woo Youn Kim.
    Paper | code

  • Graph Convolutional Neural Networks for Predicting Drug-Target Interactions [JCIM 2019]
    Wen Torng, Russ B. Altman.
    Paper

  • PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions [Chemical Science 2020]
    Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, Woo Youn Kim.
    Paper | code

  • Multi-Scale Representation Learning on Proteins [NeurIPS 2021]
    Vignesh Ram Somnath, Charlotte Bunne, Andreas Krause.
    Paper | code

  • InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions [IMC 2021]
    Dejun Jiang, Chang-Yu Hsieh, Zhenxing Wu, Yu Kang, Jike Wang, Ercheng Wang, Ben Liao, Chao Shen, Lei Xu, Jian Wu, Dongsheng Cao, Tingjun Hou.
    Paper | code

  • Structure-aware Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding Affinity [SIGKDD 2021]
    Shuangli Li, Jingbo Zhou, Tong Xu, Liang Huang, Fan Wang, Haoyi Xiong, Weili Huang, Dejing Dou, Hui Xiong.
    Paper

  • AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery [2021]
    Izhar Wallach, Michael Dzamba, Abraham Heifets.
    Paper

  • KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks [JCIM 2018]
    José Jiménez et al.
    Paper

Molecular design

Ligand-based drug design

  • DiffMol: 3D Structured Molecule Generation with Discrete Denoising Diffusion Probabilistic Models [ICML 2023 Workshop]
    Weitong Zhang, Xiaoyun Wang, Justin Smith, Joe Eaton, Brad Rees, Quanquan Gu.
    Paper

  • MolDiff: Addressing the Atom-Bond Inconsistency Problem in 3D Molecule Diffusion Generation [ICML 2023]
    Xingang Peng, Jiaqi Guan, qiang liu, Jianzhu Ma.
    Paper | code

  • Coarse-to-Fine: a Hierarchical Diffusion Model for Molecule Generation in 3D [ICML 2023]
    Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, Yanyan Lan.
    Paper | code

  • Geometric Latent Diffusion Models for 3D Molecule Generation [ICML 2023]
    Minkai Xu, Alexander Powers, Ron Dror, Stefano Ermon, Jure Leskovec.
    Paper | code

  • Geometry-Complete Diffusion for 3D Molecule Generation [ICLR 2023]
    Alex Morehead, Jianlin Cheng.
    Paper | code

  • MDM: Molecular Diffusion Model for 3D Molecule Generation [AAAI 2023]
    Lei Huang, Hengtong Zhang, Tingyang Xu, Ka-Chun Wong
    Paper | code

  • MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation [ECML 2023]
    Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard
    Paper | code

  • MUDiff: Unified Diffusion for Complete Molecule Generation [2023]
    Chenqing Hua, Sitao Luan, Minkai Xu, Rex Ying, Jie Fu, Stefano Ermon, Doina Precup.
    Paper

  • SILVR: Guided Diffusion for Molecule Generation [2023]
    Nicholas T. Runcie, Antonia S. J. S. Mey.
    Paper | code

  • Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [2023]
    Nicholas T. Runcie, Antonia S. J. S. Mey.
    Paper | code

  • Hyperbolic Graph Diffusion Model for Molecule Generation [2023]
    Lingfeng Wen, Xian Wei
    Paper

  • Shape-conditioned 3D Molecule Generation via Equivariant Diffusion Models [2023]
    Ziqi Chen, Bo Peng, Srinivasan Parthasarathy, Xia Ning
    Paper

  • EC-Conf: An Ultra-fast Diffusion Model for Molecular Conformation Generation with Equivariant Consistency [2023]
    Zhiguang Fan, Yuedong Yang, Mingyuan Xu, Hongming Chen
    Paper

  • Torsional Diffusion for Molecular Conformer Generation [NeurIPS 2022]
    Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, Tommi Jaakkola
    Paper | code

  • Diffusion-based Molecule Generation with Informative Prior Bridges [NeurIPS 2022]
    Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, Qiang Liu
    Paper

  • Equivariant Diffusion for Molecule Generation in 3D [ICML 2022]
    Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, Max Welling.
    Paper | code

  • E(n) Equivariant Normalizing Flows [NeurIPS 2021]
    Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, Max Welling.
    Paper | code

  • Symmetry-Aware Actor-Critic for 3D Molecular Design [ICLR 2021]
    Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, José Miguel Hernández-Lobato.
    Paper | code

  • Reinforcement Learning for Molecular Design Guided by Quantum Mechanics [ICML 2020]
    Gregor N. C. Simm, Robert Pinsler, José Miguel Hernández-Lobato.
    Paper | code

  • An Autoregressive Flow Model for 3D Molecular Geometry Generation from Scratch [ICLR 2022]
    Youzhi Luo, Shuiwang Ji.
    Paper | code

  • Inverse design of 3d molecular structures with conditional generative neural networks [Nature Communications 2021]
    Niklas W. A. Gebauer, Michael Gastegger, Stefaan S. P. Hessmann, Klaus-Robert Müller, Kristof T. Schütt.
    Paper | code

  • 3D-Scaffold: A Deep Learning Framework to Generate 3D Coordinates of Drug-like Molecules with Desired Scaffolds [JPCB 2021]
    Rajendra P Joshi, Niklas W A Gebauer, Mridula Bontha, Mercedeh Khazaieli, Rhema M James, James B Brown, Neeraj Kumar.
    Paper | code

  • Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules [NeurIPS 2019]
    Niklas W. A. Gebauer, Michael Gastegger, Kristof T.
    Paper | code

Structure-based drug design

  • Learning Subpocket Prototypes for Generalizable Structure-based Drug Design [ICML 2023]
    ZAIXI ZHANG, Qi Liu.
    Paper | code

  • DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [ICML 2023]
    Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang, Quanquan Gu.
    Paper | code

  • 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction [ICLR 2023]
    Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, Jianzhu Ma.
    Paper | code

  • Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [2023]
    Haitao Lin, Yufei Huang, Haotian Zhang, Lirong Wu, Siyuan Li, Zhiyuan Chen, Stan Z. Li Paper

  • Structure-based Drug Design with Equivariant Diffusion Models [2022]
    Arne Schneuing et al.
    Paper | code

  • Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [2022]
    Ilia Igashov et al.
    Paper | code

  • Fragment-Based Ligand Generation Guided By Geometric Deep Learning On Protein-Ligand Structure [2022]
    Alexander Powers, Helen Yu, Patricia Suriana, Ron Dror.
    Paper | code

  • Generating 3D Molecules for Target Protein Binding [ICML 2022]
    Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, Shuiwang Ji.
    Paper | code

  • 3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design [ICML 2022]
    Yinan Huang, Xingang Peng, Jianzhu Ma, Muhan Zhang.
    Paper | code

  • Structure-based de novo drug design using 3D deep generative models [Chemical Science 2021]
    Yibo Li, Jianfeng Pei, Luhua Lai.
    Paper

  • A 3D generative model for structure-based drug design [NeurIPS 2021]
    Shitong Luo, Jiaqi Guan, Jianzhu Ma, Jian Peng
    Paper | code

  • Generating 3d molecular structures conditional on a receptor binding site with deep generative models [Chemical Science 2021]
    Tomohide Masuda, Matthew Ragoza, David Ryan Koes.
    Paper | code

Macromolecular design

  • End-to-End Full-Atom Antibody Design [ICML 2023]
    Xiangzhe Kong, Wenbing Huang, Yang Liu.
    Paper | code

  • AbODE: Ab initio antibody design using conjoined ODEs [ICML 2023]
    Yogesh Verma, Markus Heinonen, Vikas Garg.
    Paper

  • SE(3) diffusion model with application to protein backbone generation [ICML 2023]
    Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, Tommi S. Jaakkola.
    Paper | code

  • Generating Novel, Designable, and Diverse Protein Structures by Equivariantly Diffusing Oriented Residue Clouds [ICML 2023]
    Yeqing Lin, Mohammed AlQuraishi.
    Paper | code

  • Chemically Transferable Generative Backmapping of Coarse-Grained Proteins [ICML 2023]
    Soojung Yang, Rafael Gomez-Bombarelli.
    Paper | code

  • Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer [2023]
    Cheng Tan, Zhangyang Gao, Stan Z. Li.
    Paper

  • Conditional Antibody Design as 3D Equivariant Graph Translation [ICLR 2023]
    Xiangzhe Kong, Wenbing Huang, Yang Liu.
    Paper | code

  • Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models [NIPS 2022]
    Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, Jianzhu Ma.
    Paper | code

  • Protein Sequence and Structure Co-Design with Equivariant Translation [ICLR 2023]
    Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, Jian Tang.
    Paper

  • Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design [ICLR 2022 spotlight]
    Wengong Jin, Jeremy Wohlwend, Regina Barzilay, Tommi Jaakkola.
    Paper | code

Molecular conformation generation

Molecular-based conformation generation

  • GeoDiff:A Geometric Diffusion Model for Molecular Conformation Generation [ICLR 2022]
    Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang.
    Paper | code

  • Learning Neural Generative Dynamics for Molecular Conformation Generation [ICLR 2021]
    Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang.
    Paper | code

  • An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming [ICML 2021]
    Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, Jian Tang.
    Paper | code

  • A Generative Model for Molecular Distance Geometry [ICML 2020]
    Gregor N. C. Simm, José Miguel Hernández-Lobato.
    Paper | code

  • Learning Gradient Fields for Molecular Conformation Generation [ICML 2021]
    Chence Shi, Shitong Luo, Minkai Xu, Jian Tang.
    Paper | code

  • GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles [NeurIPS 2021]
    Octavian-Eugen Ganea, Lagnajit Pattanaik, Connor W. Coley, Regina Barzilay, Klavs F. Jensen, William H. Green, Tommi S. Jaakkola.
    Paper | code

  • Predicting Molecular Conformation via Dynamic Graph Score Matching [NeurIPS 2021]
    Shitong Luo, Chence Shi, Minkai Xu, Jian Tang.
    Paper

  • Direct Molecular Conformation Generation [2022]
    Jinhua Zhu, Yingce Xia, Chang Liu, Lijun Wu, Shufang Xie, Yusong Wang, Tong Wang, Tao Qin, Wengang Zhou, Houqiang Li, Haiguang Liu, Tie-Yan Liu.
    Paper | code

  • Molecular Geometry Prediction using a Deep Generative Graph Neural Network [Scientific Reports 2019]
    Elman Mansimov, Omar Mahmood, Seokho Kang, Kyunghyun Cho.
    Paper | code

Complex-based conformation generation

  • DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking [2022]
    Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi S Jaakkola.
    Paper

  • TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction [NeurIPS 2022]
    Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, Shuangjia Zheng.
    Paper | code

  • EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction [ICML 2022]
    Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, T Jaakkola.
    Paper | code

  • A geometric deep learning approach to predict binding conformations of bioactive molecules [JCIM 2021]
    Arne Schneuing et al.
    Paper | code

  • Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking [ICLR 2022]
    Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi Jaakkola, Andreas Krause.
    Paper | code

  • DeepBSP—a machine learning method for accurate prediction of protein–ligand docking structures [2021]
    Jingxiao Bao, Xiao He,* and John Z. H. Zhang*.
    Paper | code

Protein-based conformation generation

  • EigenFold: Generative Protein Structure Prediction with Diffusion Models [ICLR 2023 workshop]
    Bowen Jing, Ezra Erives, Peter Pao-Huang, Gabriele Corso, Bonnie Berger, Tommi Jaakkola.
    Paper | code

  • Highly accurate protein structure prediction with AlphaFold [Nature]
    John et al.
    Paper | code

  • Learning Hierarchical Protein Representations via Complete 3D Graph Networks [ICLR 2023]
    Limei Wang, Haoran Liu, Yi Liu, Jerry Kurtin, Shuiwang Ji.
    Paper | code

  • ScanNet: an interpretable geometric deeplearning model for structure-based protein binding site prediction [Nature communications 2021]
    Nicolas Renaud, Cunliang Geng, Sonja Georgievska, Francesco Ambrosetti, Lars Ridder, Dario F. Marzella, Manon F. Réau, Alexandre M. J. J. Bonvin & Li C. Xue .
    Paper | code

  • Geometric deep learning of RNA structure [Science 2021]
    RAPHAEL J. L. TOWNSHEND, STEPHAN EISMANN, ANDREW M. WATKINS, RAMYA RANGAN, MARIA KARELINA, RHIJU DAS, AND RON O. DROR.
    Paper

  • Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein Structures [ICLR 2021]
    Pedro Hermosilla, Marco Schäfer, Matěj Lang, Gloria Fackelmann, Pere Pau Vázquez, Barbora Kozlíková, Michael Krone, Tobias Ritschel, Timo Ropinski.
    Paper | code

  • Learning from Protein Structure with Geometric Vector Perceptrons [ICLR 2021]
    Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael J.L. Townshend, Ron Dror.
    Paper | code

  • SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects [Nature communications 2021]
    Oliver T. Unke, Stefan Chmiela, Michael Gastegger, Kristof T. Schütt, Huziel E. Sauceda & Klaus-Robert Müller .
    Paper | code

Molecular 3D pretraining

  • Protein Representation Learning by Geometric Structure Pretraining [ICLR 2023]
    Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang.
    Paper | code

  • Pre-training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding [Advanced Science 2022]
    Fang Wu, Shuting Jin, Yinghui Jiang, Xurui Jin, Bowen Tang, Zhangming Niu, Xiangrong Liu, Qiang Zhang, Xiangxiang Zeng, Stan Z. Li.
    Paper | code

  • Self-Supervised Pre-training for Protein Embeddings Using Tertiary Structures [AAAI 2022]
    Yuzhi Guo, Jiaxiang Wu, Hehuan Ma, Junzhou Huang.
    Paper

  • Fractional Denoising for 3D Molecular Pre-training [ICML 2023] Shikun Feng, Yuyan Ni, Yanyan Lan, Zhi-Ming Ma, Weiying Ma. Paper | code

  • A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining [ICML 2023] Shengchao Liu, weitao Du, Zhi-Ming Ma, Hongyu Guo, Jian Tang
    Paper | code

  • Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules [ICLR 2023] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, Stan Z. Li.
    Paper | code

  • LagNet: Deep Lagrangian Mechanics for Plug-and-Play Molecular Representation Learning [AAAI 2023]
    Chunyan Li, JunfengYao, Jinsong Su, Zhaoyang Liu, Xiangxiang Zeng, Chenxi Huang.
    Paper

  • Transformer-M: One Transformer Can Understand Both 2D & 3D Molecular Data [ICLR 2023]
    Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, Di He.
    Paper | code

  • Uni-Mol: A Universal 3D Molecular Representation Learning Framework [ICLR 2023]
    Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang, Guolin Ke.
    Paper | code

  • Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching [ICLR 2023]
    Shengchao Liu, Hongyu Guo, Jian Tang.
    Paper | code

  • Pre-training via Denoising for Molecular Property Prediction [ICLR 2023]
    Sheheryar Zaidi, Michael Schaarschmidt, James Martens, Hyunjik Kim, Yee Whye Teh, Alvaro Sanchez-Gonzalez, Peter Battaglia, Razvan Pascanu, Jonathan Godwin.
    Paper | code

  • Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs [AAAI 2023]
    Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, Yang Liu.
    Paper | code

  • Zero-Shot 3D Drug Design by Sketching and Generating [NeurIPS 2022]
    Siyu Long, Yi Zhou, Xinyu Dai, Hao Zhou.
    Paper | code

  • Pre-training Molecular Graph Representation with 3D Geometry [ICLR 2022]
    Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang.
    Paper | code

  • Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond [ICLR 2022]
    Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, Peter Battaglia.
    Paper

  • Geometry-enhanced molecular representation learning for property prediction [NMI 2022]
    Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang, Hua Wu & Haifeng Wang.
    Paper | code

  • 3D Infomax improves GNNs for Molecular Property Prediction [ICML 2022]
    Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, Pietro Liò.
    Paper | code

  • Unified 2D and 3D Pre-Training of Molecular Representations [KDD 2022]
    Jinhua Zhu, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Wengang Zhou, Houqiang Li, Tie-Yan Liu.
    Paper | code

  • HamNet: Conformation-Guided Molecular Representation with Hamiltonian Neural Networks [ICLR 2021]
    Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai. Paper

About

Geometry Deep Learning for Drug Discovery and Life Science

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published