-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
105 additions
and
1 deletion.
There are no files selected for viewing
104 changes: 104 additions & 0 deletions
104
federatedscope/model_heterogeneity/methods/FCCL/HPO_FCCL_CV_High_Heterogeneity.sh
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
set -e | ||
cd ../../../ #到federatedscope目录 | ||
|
||
# Configuration | ||
gpu=$1 | ||
dataset=$2 #cifar10,svhn,office_caltech | ||
client_file=model_heterogeneity/model_settings/model_setting_CV_high_heterogeneity.yaml | ||
result_floder=model_heterogeneity/result/new_0730 | ||
|
||
# Method setup | ||
method=FCCL | ||
script_floder="model_heterogeneity/methods/"${method} | ||
main_cfg=${script_floder}"/${method}""_on_"${dataset}".yaml" | ||
exp_name="HPO_"$method"_on_"$dataset | ||
|
||
# WandB setup | ||
wandb_use=False | ||
wandb_name_user=niudaidai | ||
wandb_online_track=False | ||
wandb_client_train_info=True | ||
wandb_name_project="HPO_"$method"_on_"$dataset | ||
|
||
# Hyperparameters | ||
local_update_step=(1) | ||
lrs=(0.01 0.001 0.0001) | ||
optimizer=('Adam') | ||
seed=(0) | ||
total_round=200 | ||
patience=50 | ||
momentum=0.9 | ||
freq=1 | ||
|
||
# FCCL-specific parameters | ||
off_diag_weight=(0.0051 0.00032) | ||
loss_dual_weight=(0.1 1 10) | ||
public_dataset=(cifar100 fashion_minist minist) | ||
out_channels=100 | ||
|
||
# Define function for model training | ||
train_model() { | ||
python main.py --cfg ${main_cfg} --client_cfg ${client_file} \ | ||
federate.total_round_num ${total_round} \ | ||
early_stop.patience ${patience} \ | ||
result_floder ${result_floder} \ | ||
exp_name ${exp_name} \ | ||
seed ${1} \ | ||
train.local_update_steps ${2} \ | ||
train.optimizer.type ${3} \ | ||
train.optimizer.lr ${4} \ | ||
train.optimizer.momentum ${momentum} \ | ||
device ${gpu} \ | ||
${splitter_args} \ | ||
wandb.use ${wandb_use} \ | ||
wandb.name_user ${wandb_name_user} \ | ||
wandb.name_project ${wandb_name_project} \ | ||
wandb.online_track ${wandb_online_track} \ | ||
wandb.client_train_info ${wandb_client_train_info} \ | ||
eval.freq ${freq} \ | ||
fccl.off_diag_weight ${5} \ | ||
fccl.loss_dual_weight ${6} \ | ||
MHFL.public_dataset ${7} \ | ||
model.out_channels ${out_channels} | ||
} | ||
|
||
# Training parameters based on the dataset | ||
declare -A lda_alpha_map=(["femnist"]=100 ["cifar10"]="100 1.0 0.1" ["svhn"]="100 1.0 0.1" ["office_caltech"]="100 1.0 0.1") | ||
lda_alpha=(${lda_alpha_map[$dataset]}) | ||
|
||
# Loop over parameters for HPO | ||
for alpha in "${lda_alpha[@]}"; do | ||
for opt in "${optimizer[@]}"; do | ||
for lr in "${lrs[@]}"; do | ||
for ls in "${local_update_step[@]}"; do | ||
for odw in "${off_diag_weight[@]}"; do | ||
for ldw in "${loss_dual_weight[@]}"; do | ||
for pd in "${public_dataset[@]}"; do | ||
for s in "${seed[@]}"; do | ||
case "$public_dataset" in | ||
"cifar100") | ||
out_channels=100 | ||
;; | ||
"fashion_minist" | "minist") | ||
out_channels=10 | ||
;; | ||
*) | ||
# Handle the case when public_dataset is neither "cifar100", "fashion_minist", nor "minist" | ||
# You can set a default value or raise an error based on your requirement. | ||
# For example, you could do: | ||
# out_channels=0 | ||
# echo "Unknown public_dataset value. Setting out_channels to 0." | ||
echo "Unknown public_dataset value: $public_dataset" | ||
exit 1 | ||
;; | ||
esac | ||
splitter_args="data.splitter_args ""[{'alpha':${alpha}}]" | ||
train_model "$s" "$ls" "$opt" "$lr" "$odw" "$ldw" "$pd" | ||
done | ||
done | ||
done | ||
done | ||
done | ||
done | ||
done | ||
done |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters