Skip to content

Commit

Permalink
updated relationship-between-coefficient-of-determination-and-pearson…
Browse files Browse the repository at this point in the history
…-correlation-coefficient.ipynb
zyxue committed Jan 3, 2021
1 parent 542927a commit a845977
Showing 1 changed file with 21 additions and 26 deletions.
Original file line number Diff line number Diff line change
@@ -10,7 +10,9 @@
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import statsmodels.api as sm\n",
"import statsmodels.formula.api as smf"
"import statsmodels.formula.api as smf\n",
"\n",
"np.random.seed(123)"
]
},
{
@@ -45,7 +47,7 @@
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x11e4cda30>"
"<AxesSubplot:xlabel='x', ylabel='y'>"
]
},
"execution_count": 4,
@@ -54,7 +56,7 @@
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAASZElEQVR4nO3df2xd9X3G8edxYhwTs8Y4VhbidEEFtWMshM5DtJmqrrQT7arQKlM1prFsQ0o3QQdbNcLYJlq12rqoa7c/pk60sEYrpUMYFMRQV0SRKraK4UAwgWyCMijOAjEmaeMuMU7uZ3/ck9Q/Y8e+55x7z/f9kizfe86993wuPx5/7/fXdUQIAJCOtrILAAAUi+AHgMQQ/ACQGIIfABJD8ANAYgh+AEhMbsFve4Xt/7T9jO3nbH82O36h7Sdsv2j7X2yfk1cNAICZnNc8ftuWtDIixmy3S3pc0k2S/kTS/RHxLdv/KOmZiPjKmV5r9erVsWHDhlzqBICq2rNnzxsR0Tv9+PK8Lhj1vyhj2d327CckfUDSb2XHd0n6jKQzBv+GDRs0ODiYT6EAUFG2X5nteK59/LaX2d4r6ZCkRyT9QNKRiDiRPWRY0ro5nrvd9qDtwZGRkTzLBICk5Br8EXEyIjZJ6pN0haR3ncVz74iI/ojo7+2d8UkFALBIhczqiYgjkh6T9B5Jq2yf6mLqk3SgiBoAAHV5zurptb0qu90p6UOS9qv+B+A3sodtk7Q7rxoAADPlNrgraa2kXbaXqf4H5t6IeMj285K+Zfvzkp6WdGeONQAApslzVs+QpMtnOf6S6v39AIAzGB0b1/DhY+rr7lRPV0fDXjfPFj8AYJF27z2gHQNDam9r00Stpp1bN2rLplknQZ41tmwAgCYzOjauHQNDOj5R09HxEzo+UdMtA0MaHRtvyOsT/ADQZIYPH1N729R4bm9r0/DhYw15fYIfAJpMX3enJmq1KccmajX1dXc25PUJfgBoMj1dHdq5daNWtLfpvI7lWtHepp1bNzZsgJfBXQBoQls2rdPmi1YzqwcAUtLT1dHQwD+Frh4ASAzBDwANMjo2rmdePdKwaZd5oasHABogzwVXjUaLHwCWKO8FV41G8APAEuW94KrRCH4AWKK8F1w1GsEPAEuU94KrRmNwFwAaIM8FV41G8ANAg+S14KrR6OoBgMQQ/ACQGIIfABJD8ANAYgh+AJXWKvvnFIlZPQAqq5X2zykSLX4AldRq++cUieAHUEmttn9OkQh+AJXUavvnFIngB1BJrbZ/TpEY3AVQWa20f06RCH4AldYq++cUKbeuHtvrbT9m+3nbz9m+KTv+GdsHbO/Nfj6SVw0AgJnybPGfkPTpiHjK9nmS9th+JDv35Yj4Yo7XBgDMIbfgj4iDkg5mt4/a3i+JlRMAULJCZvXY3iDpcklPZIdutD1k+y7b3XM8Z7vtQduDIyMjRZQJAEnIPfhtd0kakHRzRPxY0lckvUPSJtU/EfztbM+LiDsioj8i+nt7e/MuEwCSkWvw225XPfTvjoj7JSkiXo+IkxFRk/RVSVfkWQMAYKo8Z/VY0p2S9kfElyYdXzvpYR+XtC+vGgAAM+U5q2ezpOskPWt7b3bsNknX2t4kKSS9LOmTOdYAAJgmz1k9j0vyLKcezuuaALAQo2PjSa/mZeUugKSwRz+btAFICHv01xH8AJLBHv11BD+AZLBHfx3BDyAZ7NFfx+AugMI0w2wa9ugn+AEUpJlm06S+Rz/BDyB3k2fTHFe9j/1P7xvSqnPP0S9c8DNTQrgZPhVUHcEPIHenZtOcCn1JGj9R0x/88x7VFKdb/830qaDKGNwFkLvZZtNI0v9NnDw9l/7F148yx74gBD+A3E2eTXPuOctmfczeV48wx74gdPUAKMSp2TTf/8Gobrzn6Snnjk/UtKHnXObYF4QWP4DC9HR1aP3556pj2dT9GzuWWe3LlzHHviC0+AEUqq+7U26zdDJOH3Ob1dfdqcvWr0p+jn0RaPEDKNR8q2d7ujp02fpVhH6OaPEDKByrZ8tF8AMoReqrZ8tEVw8AJIbgB4DEEPwAkBiCHwASQ/ADQGIIfgBIDMEPAIkh+AEgMQQ/ACSG4AeAxOQW/LbX237M9vO2n7N9U3b8fNuP2H4h+92dVw0AgJnybPGfkPTpiLhE0pWSbrB9iaRbJT0aERdLejS7DwAoSG7BHxEHI+Kp7PZRSfslrZN0jaRd2cN2SfpYXjUAAGYqpI/f9gZJl0t6QtKaiDiYnXpN0po5nrPd9qDtwZGRkSLKBIAk5B78trskDUi6OSJ+PPlcRISkmO15EXFHRPRHRH9vb2/eZQJAMnINftvtqof+3RFxf3b4ddtrs/NrJR3KswYAwFR5zuqxpDsl7Y+IL0069aCkbdntbZJ251UDAGCmPL+Ba7Ok6yQ9a3tvduw2SV+QdK/t6yW9IukTOdYAAJgmt+CPiMcleY7TV+V1XQDAmbFyFwASQ/ADTWR0bFzPvHpEo2PjZZeCCsuzjx/AWdi994B2DAypva1NE7Wadm7dqC2b1pVdFiqIFj/QBEbHxrVjYEjHJ2o6On5CxydqumVgiJY/ckHwA01g+PAxtbdN/d+xva1Nw4ePNfxadCeBrh6gCfR1d2qiVptybKJWU193Z0OvQ3cSJFr8QFPo6erQzq0btaK9Ted1LNeK9jbt3LpRPV0dDbsG3Uk4hRY/0CS2bFqnzRet1vDhY+rr7mxo6Es/7U46rp9+sjjVndToa6G5EfxAE+np6sgthIvqTkLzo6sHSEQR3UloDbT4gYTk3Z2E1kDwA4nJszsJrYGuHgBIDMEPAIkh+AEgMQQ/ACSG4AeAxBD8AJAYgh/IGbthotkwjx/IEbthohnR4gdywm6YaFYEP5CTIr9cBTgbBD+QE3bDRLMi+IGcsBsmmhWDu0CO2A0TzYjgB3LGbphoNnT1ABnm2yMV87b4bX9K0jci4nAB9QClYL49UrKQFv8aSU/avtf21ba9kBe2fZftQ7b3TTr2GdsHbO/Nfj6y2MKBRmG+PVIzb/BHxF9IuljSnZJ+V9ILtv/K9jvmeerXJV09y/EvR8Sm7Ofhs6wXaDjm2yM1C+rjj4iQ9Fr2c0JSt6T7bO88w3O+J+nNRhQJ5In59kjNvMFv+ybbeyTtlPTvkn4xIv5Q0i9J2rqIa95oeyjrCuo+w3W32x60PTgyMrKIywALw3x7pMb1xvwZHmB/VtJdEfHKLOd+PiL2n+G5GyQ9FBGXZvfXSHpDUkj6nKS1EfH78xXZ398fg4OD8z0MWJLRsXHm26NSbO+JiP7px+ed1RMRt5/h3JyhP8fjX59U0FclPXQ2zwfyxHx7pKLQefy21066+3FJ++Z6LAAgH7mt3LV9j6T3S1pte1jS7ZLeb3uT6l09L0v6ZF7XBwDMLrfgj4hrZzl8Z17XAwAsDFs2AEBiCH4ASAzBD8yDzdtQNWzLDJwBm7ehimjxA3Ng8zZUFcEPzIHN21BVBD8wBzZvQ1UR/GhZeQ+6snkbqorBXbSkogZd+bJ0VBHBj5YzedD1uOpdMbcMDGnzRatzCWY2b0PV0NWDlsOgK7A0BD9aDoOuwNIQ/Gg5cw26SmKFLbAA9PGjJU0fdH38xTe0+W++ywpbYAFo8aNl9XR16LL1qySJFbbAWSD40fIY7AXODsGPlsdgL3B2CH60PFbYAmeHwV1UAitsgYUj+FEZrLAFFoauHgBIDMEPAIkh+AEgMQQ/ACSG4AeAxBD8AJAYgh8AEpNb8Nu+y/Yh2/smHTvf9iO2X8h+d+d1fQDA7PJs8X9d0tXTjt0q6dGIuFjSo9l9AECBcgv+iPiepDenHb5G0q7s9i5JH8vr+sjH6Ng4X3YCtLiit2xYExEHs9uvSVoz1wNtb5e0XZLe/va3F1Aa5rN77wHtGBjiy06AFlfa4G5EhKQ4w/k7IqI/Ivp7e3sLrAyzGR0b58tOgIooOvhft71WkrLfhwq+PhaJLzsBqqPo4H9Q0rbs9jZJuwu+PhaJLzsBqiPP6Zz3SPq+pHfaHrZ9vaQvSPqQ7RckfTC7jyYz2wAuX3YCVEdug7sRce0cp67K65pYuukDuH/50Ut06QVvU193J192AlQEX8SC0yYP4B5XvVvnzx/Yp5XnLNPJiNOzeAh8oLWxZQNOm20AV5J+8tZJZvEAFULw47TZBnAnYxYPUA0EP06bPIC7smPZjPPM4gGqgT5+TDF5AHffgR/pc//6/JSVuvTvA62P4McMPV0d6unq0GXrV+nqS3+WWTxAxRD8OKNTfwQAVAd9/ACQGIIfABJD8ANAYgh+AEgMwQ8AiSH4ASAxBD8AJIbgB4DEEPwAkBiCHwASQ/ADQGIIfgBIDMEPAIkh+AEgMQQ/ACSG4AeAxBD8AJAYgh8AEkPwA0BiCH4ASAzBDwCJWV7GRW2/LOmopJOSTkREfxl1AECKSgn+zK9GxBslXh8AkkRXDwAkpqzgD0nfsb3H9vbZHmB7u+1B24MjIyMFlwcA1VVW8P9KRLxb0ocl3WD7fdMfEBF3RER/RPT39vYWXyEAVFQpwR8RB7LfhyQ9IOmKMuoAgBQVHvy2V9o+79RtSb8maV/RdQBAqsqY1bNG0gO2T13/mxHx7RLqAIAkFR78EfGSpMuKvi4AoI7pnACQGIIfABJD8ANAYgh+AEgMwd9Ao2PjeubVIxodGy+7FACYU5mbtFXK7r0HtGNgSO1tbZqo1bRz60Zt2bSu7LIAYAZa/A0wOjauHQNDOj5R09HxEzo+UdMtA0O0/AE0JYK/AYYPH1N729R/lO1tbRo+fKykigBgbgR/A/R1d2qiVptybKJWU193Z0kVAcDcCP4G6Onq0M6tG7WivU3ndSzXivY27dy6UT1dHWWXBgAzMLjbIFs2rdPmi1Zr+PAx9XV3EvoAmhbB30A9XR0EPoCmR1cPACSG4AeAxFQ6+FlJCwAzVbaPn5W0ADC7Srb4WUkLAHOrZPCzkhYA5lbJ4GclLQDMrZLBz0paAJhbZQd3WUkLALOrbPBLrKQFgNlUsqsHADA3gh8AEkPwA0BiCH4ASAzBDwCJcUSUXcO8bI9IemWWU6slvVFwOc2C954m3nt6lvK+fy4ieqcfbIngn4vtwYjoL7uOMvDeee+pSfW95/G+6eoBgMQQ/ACQmFYP/jvKLqBEvPc08d7T0/D33dJ9/ACAs9fqLX4AwFki+AEgMS0b/Lavtv3ftl+0fWvZ9RTF9nrbj9l+3vZztm8qu6Yi2V5m+2nbD5VdS5Fsr7J9n+3/sr3f9nvKrqkotv84+299n+17bK8ou6a82L7L9iHb+yYdO9/2I7ZfyH53L/U6LRn8tpdJ+gdJH5Z0iaRrbV9SblWFOSHp0xFxiaQrJd2Q0HuXpJsk7S+7iBL8vaRvR8S7JF2mRP4Z2F4n6Y8k9UfEpZKWSfrNcqvK1dclXT3t2K2SHo2IiyU9mt1fkpYMfklXSHoxIl6KiLckfUvSNSXXVIiIOBgRT2W3j6oeAOvKraoYtvsk/bqkr5VdS5Fsv03S+yTdKUkR8VZEHCm3qkItl9Rpe7mkcyX9b8n15CYivifpzWmHr5G0K7u9S9LHlnqdVg3+dZJenXR/WImE32S2N0i6XNIT5VZSmL+TdIuk2nwPrJgLJY1I+qesm+trtleWXVQRIuKApC9K+qGkg5J+FBHfKbeqwq2JiIPZ7dckrVnqC7Zq8CfPdpekAUk3R8SPy64nb7Y/KulQROwpu5YSLJf0bklfiYjLJf1EDfi43wqy/uxrVP/jd4GklbZ/u9yqyhP1+fdLnoPfqsF/QNL6Sff7smNJsN2ueujfHRH3l11PQTZL2mL7ZdW79j5g+xvlllSYYUnDEXHqk919qv8hSMEHJf1PRIxExISk+yW9t+Saiva67bWSlP0+tNQXbNXgf1LSxbYvtH2O6oM9D5ZcUyFsW/W+3v0R8aWy6ylKRPxZRPRFxAbV/31/NyKSaPlFxGuSXrX9zuzQVZKeL7GkIv1Q0pW2z83+279KiQxsT/KgpG3Z7W2Sdi/1BVvyy9Yj4oTtGyX9m+qj/HdFxHMll1WUzZKuk/Ss7b3Zsdsi4uESa0L+PiXp7qyh85Kk3yu5nkJExBO275P0lOoz2p5WhbdusH2PpPdLWm17WNLtkr4g6V7b16u+Pf0nlnwdtmwAgLS0alcPAGCRCH4ASAzBDwCJIfgBIDEEPwAkhuAHgMQQ/ACQGIIfWATbv2x7yPYK2yuz/eIvLbsuYCFYwAUsku3PS1ohqVP1vXT+uuSSgAUh+IFFyrZPeFLScUnvjYiTJZcELAhdPcDi9UjqknSe6i1/oCXQ4gcWyfaDqm8RfaGktRFxY8klAQvSkrtzAmWz/TuSJiLim9l3QP+H7Q9ExHfLrg2YDy1+AEgMffwAkBiCHwASQ/ADQGIIfgBIDMEPAIkh+AEgMQQ/ACTm/wFFetyBPqJJmAAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR1ElEQVR4nO3df2zc9X3H8dfrYuMEjFqTeFGasKUalIqiYJDXdc1UtaWtaMdCu0xVmaBoq5b+URid0BLWf9r90Eaz/lj/mDqlkJZplA5hqkQIdUXAhKpWCIcFF5pudB0Up4EYN4y4S4yde++PO2u2seOz7773+Z4/z4cUfPe9u+/3zUl55ePPr68jQgCAfFRSFwAAaC+CHwAyQ/ADQGYIfgDIDMEPAJnpSl1AIzZs2BBbt25NXQYAdJRDhw69HBH98493RPBv3bpVw8PDqcsAgI5i+/mFjtPVAwCZIfgBIDMEPwBkhuAHgMwQ/ACQGYIfAEpqfGJST73wisYnJlt63o6YzgkAuTlw+Kj2DI2ou1LRVLWqvTu3acfA5pacmxY/AJTM+MSk9gyN6PRUVScnp3V6qqrdQyMta/kT/ABQMqMnTqm7MjeeuysVjZ441ZLzE/wAUDJb+tZpqlqdc2yqWtWWvnUtOT/BDwAls763R3t3btPa7orO7+nS2u6K9u7cpvW9PS05P4O7AFBCOwY2a/tFGzR64pS29K1rWehLBD8AlNb63p6WBv4MunoAIDMEPwBkhuAHgMwQ/ACQGYIfADJD8ANAZgh+AMgMwQ8AmSH4ASAzBD8AZIbgB4DMEPwAkBmCHwAyQ/ADQGYKC37bF9p+1PaPbD9j+5b68c/ZPmr7cP3Ph4qqAQDwekXuxz8t6daIeNL2+ZIO2X6o/tqXI+ILBV4bALCIwoI/Io5JOlZ/fNL2EUmbi7oeAKAxbenjt71V0hWSHq8fusn2iO39tvsW+cwu28O2h8fGxtpRJgBkofDgt90raUjSpyPiVUlflfTrkgZU+43giwt9LiL2RcRgRAz29/cXXSYAZKPQ4LfdrVro3x0R90tSRLwUEWcioirpa5LeXmQNAIC5ipzVY0l3SjoSEV+adXzTrLd9RNLTRdUAAHi9Imf1bJd0g6Qf2j5cP/YZSdfZHpAUkp6T9MkCawAAzFPkrJ7vSfICLz1Y1DUBAEtj5S4AZIbgB4DMEPwAkBmCHwAyQ/ADQGYIfgDIDMEPAJkh+AEgMwQ/AGSG4AeAzBD8AJAZgh8AMkPwA1jS+MSknnrhFY1PTKYuBS1Q5LbMAFaBA4ePas/QiLorFU1Vq9q7c5t2DHD77E5Gix/AosYnJrVnaESnp6o6OTmt01NV7R4aoeXf4Qh+AIsaPXFK3ZW5MdFdqWj0xKklP0v3UHnR1QNgUVv61mmqWp1zbKpa1Za+dWf9HN1D5UaLH8Ci1vf2aO/ObVrbXdH5PV1a213R3p3btL63Z9HP0D1UfrT4AZzVjoHN2n7RBo2eOKUtfeuWDP1Hf3xcXZW5d12d6R4622fRPgQ/gCWt7+1ZMrRnunfW2Prla2fmvNZI9xDah+AH0JTxiUk98/NXtfu+EU1Ozx0POK9njc5UY8nuIbQXwQ9gxWZa+RX59aF/zhr9xe++Te95668Q+iVD8ANYkdmDuAs5E0HolxTBD2BFZub4n9bc4D/3nDWqBt07ZVZY8Nu+UNI/SdooKSTti4iv2L5A0r9I2irpOUkfjYgTRdUBoBgLzfHv6bL+8for9bY3vYHQL7Ei5/FPS7o1Ii6V9A5Jn7J9qaTbJD0cERdLerj+HECJNLLqdqE5/n/3+5frXW+he6fsCmvxR8QxScfqj0/aPiJps6RrJb27/ra7JP2bpD1F1QFgeZaz6nY5c/xRHm3p47e9VdIVkh6XtLH+j4IkvahaVxCAEpg9YDvTd797aETbL9qwaKg3Mscf5VL4lg22eyUNSfp0RLw6+7WICNX6/xf63C7bw7aHx8bGii4TgJrblA2do9Dgt92tWujfHRH31w+/ZHtT/fVNko4v9NmI2BcRgxEx2N/fX2SZAOpWuikbOkthwW/bku6UdCQivjTrpYOSbqw/vlHSgaJqALA8K9mUDZ2nyD7+7ZJukPRD24frxz4j6XZJ99r+hKTnJX20wBoALBMDtqtfkbN6vifJi7x8VVHXBdA8BmxXN/bjB4DMEPwAkBmCHwAyQ/ADQGYIfgDIDMEPtEEjm54B7cJ+/EDBlrPpGdAOtPiBAs3e9Ozk5LROT1W1e2iElj+SIviBArHpGcqI4AcKxKZnKCOCHygQm56hjBjcBQrGpmcoG4IfaAM2PUOZ0NUDAJkh+IEWYZEWOgVdPUALsEgLnYQWP9AkFmmh0xD8QJNYpIVOQ/ADTWKRFjoNwQ80aWaRVk9XReees0Y9XSzSQrkR/EALxMx/4/+fAWVF8ANNmhncnZwO/e/UGU1OB4O7KDWCH2gSg7voNAQ/oOYWXzG4i07DAi5kr9nFVzODu7vnnYPBXZRVYcFve7+kayQdj4jL6sc+J+mPJY3V3/aZiHiwqBqApcxefHVatVb77qERbb9ow7KCmx040UmK7Or5hqSrFzj+5YgYqP8h9JFUK/vn1/f26PIL30joo/QKC/6IeEzSL4o6P9AK9M8jRykGd2+yPWJ7v+2+xd5ke5ftYdvDY2Nji70NaAp3yEKOHFHcYhPbWyU9MKuPf6Okl1Vb4fJXkjZFxB8tdZ7BwcEYHh4urE5gfGKS/nmsOrYPRcTg/ONtndUTES/NKuhrkh5o5/WBxXCHLOSkrV09tjfNevoRSU+38/oAgGKnc94j6d2SNtgelfRZSe+2PaBaV89zkj5Z1PUBAAsrLPgj4roFDt9Z1PWQH/rlgZVh5S46Erc6BFaOvXrQcbjVIdAcgh8dh90wgeYsGfy2bz7bQiug3VhtCzSnkRb/RklP2L7X9tW2XXRRwNmw2hZoTkMrd+th/wFJfyhpUNK9ku6MiP8qtrwaVu5iIczqAc6uqZW7ERG2X5T0oqRpSX2S7rP9UETsbm2pQGMWWm3LPwbA0pYMftu3SPq4anvs3CHpzyJiynZF0rOSCH6UAlM8gcY00uK/QNLvRcTzsw9GRNX2NcWUBSxPq26oAuRgycHdiPjs/NCf9dqR1pcELB9TPIHGMY8fqwJTPIHGEfxYFZjiCTSOvXqwanDDc6AxBD9WFW6oAiyNrh4AyAzBDwCZIfgBIDMEPwBkhuAHgMwQ/ACQGYIfADJD8ANAZgh+AMgMwY/SGZ+Y1FMvvKLxicnUpQCrEls2oOWauQvW7JupvHbmjG56z8X6g9/8VbZhAFqosBa/7f22j9t+etaxC2w/ZPvZ+s++oq6PNA4cPqrtn39E19/xuLZ//hEdPHy04c/OvpnKyclpTU6HvvjQf+qdty/vPADOrsiunm9IunresdskPRwRF0t6uP4cq8T84D49VdXuoZGGu2wWupmKJE1OL+88AM6usOCPiMck/WLe4Wsl3VV/fJekDxd1fbRfs3fBWuhmKis5D4Cza/fg7saIOFZ//KKkjYu90fYu28O2h8fGxtpTHZrS7F2wZm6m0tPl173G3bSA1kk2qyciQlKc5fV9ETEYEYP9/f1trAwr1Yq7YO0Y2Kzv33aVbn3/W9TTxd20gCK0e1bPS7Y3RcQx25skHW/z9VGwVtwFa31vj26+qjabh7tpAa3X7uA/KOlGSbfXfx5o8/XRBq26CxZ30wKKUeR0znsk/UDSJbZHbX9CtcB/v+1nJb2v/hwlwKIpIB+Ftfgj4rpFXrqqqGtiZWYvmpqqVrV35zbtGNicuiwABWHLhsw1O/ceQOch+DPX7Nx7AJ2H4M9cs3PvAXQegj9zrZh7D6CzsDsnWjL3HkDnIPghiTnzQE7o6gGAzBD8AJAZgr9DsdIWwErRx9+BWGkLoBm0+DsMK20BNIvg7zCstAXQLIK/w7DSFkCzCP4Ow0pbAM1icLcDsdIWQDMI/g7FSlsAK0VXT2LMxwfQbrT4E2I+PoAUaPEnwnx8AKkQ/IkwHx9AKgR/IszHB5AKwZ8I8/EBpMLgbkLMxweQAsGfGPPxAbQbXT0AkJkkLX7bz0k6KemMpOmIGExRRyrjE5N07wBIJmVXz3si4uWE10+CRVsAUqOrp41YtAWgDFIFf0j6ru1Dtnct9Abbu2wP2x4eGxtrc3nFYNEWgDJIFfy/HRFXSvqgpE/Zftf8N0TEvogYjIjB/v7+9ldYABZtASiDJMEfEUfrP49L+rakt6eoo91YtAWgDNo+uGv7PEmViDhZf/wBSX/Z7jpSYdEWgNRSzOrZKOnbtmeu/82I+E6COpJh0RaAlNoe/BHxU0mXt/u6AIAapnMCQGYIfgDIDMEPAJkh+AEgMwQ/AGSG4AeAzBD8AJAZgh8AMkPwA0BmCH4AyAzBDwCZIfgBIDMEPwBkhuAHgMwQ/ACQGYIfADJD8ANAZgh+AMgMwQ8AmSH4ASAzBD8AZIbgB4DMEPwAkBmCHwAyQ/ADQGaSBL/tq23/h+2f2L4tRQ0AkKu2B7/tNZL+QdIHJV0q6Trbl7a7DgDIVYoW/9sl/SQifhoRr0n6lqRrE9QBAFlKEfybJb0w6/lo/dgctnfZHrY9PDY21rbiAGC1K+3gbkTsi4jBiBjs7+9PXQ4ArBopgv+opAtnPd9SPwYAaIMUwf+EpIttv9n2OZI+JulggjoAIEtd7b5gREzbvknSv0paI2l/RDxTxLXGJyY1euKUtvSt0/reniIuAQAdp+3BL0kR8aCkB4u8xoHDR7VnaETdlYqmqlXt3blNOwZeN4YMANkp7eBuM8YnJrVnaESnp6o6OTmt01NV7R4a0fjEZOrSACC5VRn8oydOqbsy93+tu1LR6IlTiSoCgPJYlcG/pW+dpqrVOcemqlVt6VuXqCIAKI9VGfzre3u0d+c2re2u6PyeLq3trmjvzm0M8AKAEg3utsOOgc3aftEGZvUAwDyrNvilWsufwAeAuVZlVw8AYHEEPwBkhuAHgMwQ/ACQGYIfADLjiEhdw5Jsj0l6PnUdCWyQ9HLqIkqA76GG76GG76Gmke/h1yLidTc06Yjgz5Xt4YgYTF1HanwPNXwPNXwPNc18D3T1AEBmCH4AyAzBX277UhdQEnwPNXwPNXwPNSv+HujjB4DM0OIHgMwQ/ACQGYK/ZGxfaPtR2z+y/YztW1LXlJLtNbb/3fYDqWtJxfYbbd9n+8e2j9j+rdQ1pWD7T+t/J562fY/ttalrahfb+20ft/30rGMX2H7I9rP1n32Nno/gL59pSbdGxKWS3iHpU7YvTVxTSrdIOpK6iMS+Iuk7EfFWSZcrw+/D9mZJfyJpMCIuk7RG0sfSVtVW35B09bxjt0l6OCIulvRw/XlDCP6SiYhjEfFk/fFJ1f6Sb05bVRq2t0j6HUl3pK4lFdtvkPQuSXdKUkS8FhGvJC0qnS5J62x3STpX0s8T19M2EfGYpF/MO3ytpLvqj++S9OFGz0fwl5jtrZKukPR44lJS+XtJuyVVl3jfavZmSWOSvl7v8rrD9nmpi2q3iDgq6QuSfibpmKT/iYjvpq0quY0Rcaz++EVJGxv9IMFfUrZ7JQ1J+nREvJq6nnazfY2k4xFxKHUtiXVJulLSVyPiCkm/1DJ+pV8t6v3X16r2D+GbJJ1n+/q0VZVH1OblNzw3n+AvIdvdqoX+3RFxf+p6EtkuaYft5yR9S9J7bf9z2pKSGJU0GhEzv/Xdp9o/BLl5n6T/joixiJiSdL+kdyauKbWXbG+SpPrP441+kOAvGdtWrT/3SER8KXU9qUTEn0fElojYqtog3iMRkV0LLyJelPSC7Uvqh66S9KOEJaXyM0nvsH1u/e/IVcpwkHueg5JurD++UdKBRj9I8JfPdkk3qNbCPVz/86HURSGpmyXdbXtE0oCkv0lbTvvVf+O5T9KTkn6oWnZls3WD7Xsk/UDSJbZHbX9C0u2S3m/7WdV+I7q94fOxZQMA5IUWPwBkhuAHgMwQ/ACQGYIfADJD8ANAZgh+AMgMwQ8AmSH4gRWw/Ru2R2yvtX1efZ/4y1LXBTSCBVzACtn+a0lrJa1TbT+dv01cEtAQgh9YIdvnSHpC0mlJ74yIM4lLAhpCVw+wcusl9Uo6X7WWP9ARaPEDK2T7oGpbRr9Z0qaIuClxSUBDulIXAHQi2x+XNBUR37S9RtL3bb83Ih5JXRuwFFr8AJAZ+vgBIDMEPwBkhuAHgMwQ/ACQGYIfADJD8ANAZgh+AMjM/wGGu7mDBdhBtQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
@@ -123,12 +125,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
"var_y=59.17, var_y_hat=58.53, r_squared=0.9892, 0.9892\n"
"var_y=47.42, var_y_hat=46.22, r_squared=0.9747, ρ_squared=0.9747\n"
]
}
],
"source": [
"print(f'{var_y=:.2f}, {var_y_hat=:.2f}, {r_squared=:.4f}, {ρ_squared:.4f}')"
"print(f'{var_y=:.2f}, {var_y_hat=:.2f}, {r_squared=:.4f}, {ρ_squared=:.4f}')"
]
},
{
@@ -176,25 +178,25 @@
"text": [
" OLS Regression Results \n",
"==============================================================================\n",
"Dep. Variable: y R-squared: 0.989\n",
"Model: OLS Adj. R-squared: 0.989\n",
"Method: Least Squares F-statistic: 1644.\n",
"Date: Sun, 15 Mar 2020 Prob (F-statistic): 3.82e-19\n",
"Time: 11:55:29 Log-Likelihood: -23.929\n",
"No. Observations: 20 AIC: 51.86\n",
"Df Residuals: 18 BIC: 53.85\n",
"Dep. Variable: y R-squared: 0.975\n",
"Model: OLS Adj. R-squared: 0.973\n",
"Method: Least Squares F-statistic: 693.1\n",
"Date: Sat, 02 Jan 2021 Prob (F-statistic): 8.00e-16\n",
"Time: 20:57:08 Log-Likelihood: -30.204\n",
"No. Observations: 20 AIC: 64.41\n",
"Df Residuals: 18 BIC: 66.40\n",
"Df Model: 1 \n",
"Covariance Type: nonrobust \n",
"==============================================================================\n",
" coef std err t P>|t| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"Intercept 0.8229 0.438 1.878 0.077 -0.097 1.743\n",
"x 2.8368 0.070 40.547 0.000 2.690 2.984\n",
"Intercept -0.1367 0.602 -0.227 0.823 -1.401 1.128\n",
"x 2.9906 0.114 26.327 0.000 2.752 3.229\n",
"==============================================================================\n",
"Omnibus: 0.529 Durbin-Watson: 2.322\n",
"Prob(Omnibus): 0.767 Jarque-Bera (JB): 0.624\n",
"Skew: -0.261 Prob(JB): 0.732\n",
"Kurtosis: 2.310 Cond. No. 14.8\n",
"Omnibus: 1.344 Durbin-Watson: 1.699\n",
"Prob(Omnibus): 0.511 Jarque-Bera (JB): 0.972\n",
"Skew: -0.519 Prob(JB): 0.615\n",
"Kurtosis: 2.706 Cond. No. 12.7\n",
"==============================================================================\n",
"\n",
"Warnings:\n",
@@ -205,13 +207,6 @@
"source": [
"print(results.summary())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@@ -230,7 +225,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.1"
"version": "3.8.2"
}
},
"nbformat": 4,

0 comments on commit a845977

Please sign in to comment.