Skip to content

Latest commit

 

History

History

baselines

This example includes the implementations of the following reinforcement learning algorithms:

Benchmarks

ES

RL

FAQ:

  • How to train with dm_control environments?
    • Modify experiment.py: use dm2gym wrapper, e.g.
    from gym.wrappers import FlattenDictWrapper
    from dm_control import suite
    from dm2gym import DMControlEnv
    
    config = Config(
        ...
        'env.id': Grid([('cheetah', 'run'), ('hopper', 'hop'), ('walker', 'run'), ('fish', 'upright')]),
        ...
        )
    
    def make_env(config, seed):
        domain_name, task_name = config['env.id']
        env = suite.load(domain_name, task_name, environment_kwargs=dict(flat_observation=True))
        env = DMControlEnv(env)
        env = FlattenDictWrapper(env, ['observations'])
        ...