This example includes the implementations of the following reinforcement learning algorithms:
- ES
- RL
- How to train with dm_control environments?
- Modify
experiment.py
: use dm2gym wrapper, e.g.
from gym.wrappers import FlattenDictWrapper from dm_control import suite from dm2gym import DMControlEnv config = Config( ... 'env.id': Grid([('cheetah', 'run'), ('hopper', 'hop'), ('walker', 'run'), ('fish', 'upright')]), ... ) def make_env(config, seed): domain_name, task_name = config['env.id'] env = suite.load(domain_name, task_name, environment_kwargs=dict(flat_observation=True)) env = DMControlEnv(env) env = FlattenDictWrapper(env, ['observations']) ...
- Modify