forked from X-LANCE/VoiceFlow-TTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_collate.py
196 lines (162 loc) · 7.2 KB
/
data_collate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os.path
import random
import numpy as np
import torch
import re
import torch.utils.data
import kaldiio
from tqdm import tqdm
class BaseCollate:
def __init__(self, n_frames_per_step=1):
self.n_frames_per_step = n_frames_per_step
def collate_text_mel(self, batch: [dict]):
"""
:param batch: list of dicts
This function sorts batch elements by its length and concatenate all batch elements into pytorch tensors
"""
contains_noise = (batch[0]['noise'] is not None)
utt = list(map(lambda x: x['utt'], batch))
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x['phn_ids']) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]
text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]]['phn_ids']
text_padded[i, :text.size(0)] = text
# Right zero-pad mel-spec
num_mels = batch[0]['mel'].size(0)
max_target_len = max([x['mel'].size(1) for x in batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
noise_padded = torch.zeros_like(mel_padded)
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]]['mel']
mel_padded[i, :, :mel.size(1)] = mel
output_lengths[i] = mel.size(1)
if contains_noise:
noise = batch[ids_sorted_decreasing[i]]['noise']
noise_padded[i, :, :mel.size(1)] = noise
dur_padded = torch.LongTensor(len(batch), max_input_len)
dur_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
dur = batch[ids_sorted_decreasing[i]]['dur']
dur_padded[i, :dur.size(0)] = dur
utt_name = np.array(utt)[ids_sorted_decreasing].tolist()
if isinstance(utt_name, str):
utt_name = [utt_name]
res = {
"utt": utt_name,
"text_padded": text_padded,
"input_lengths": input_lengths,
"mel_padded": mel_padded,
"noise_padded": noise_padded if contains_noise else None,
"output_lengths": output_lengths,
"dur_padded": dur_padded
}
return res, ids_sorted_decreasing
class SpkIDCollate(BaseCollate):
def __call__(self, batch, *args, **kwargs):
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
spk_ids = torch.LongTensor(list(map(lambda x: x["spk_ids"], batch)))
spk_ids = spk_ids[ids_sorted_decreasing]
base_data.update({
"spk_ids": spk_ids
})
return base_data
class XvectorCollate(BaseCollate):
def __call__(self, batch, *args, **kwargs):
base_data, ids_sorted_decreasing = self.collate_text_mel(batch)
xvectors = torch.cat(list(map(lambda x: x["xvector"].unsqueeze(0), batch)), dim=0)
xvectors = xvectors[ids_sorted_decreasing]
base_data.update({
"xvector": xvectors
})
return base_data
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size