forked from GOATmessi8/RFBNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_RFB.py
180 lines (154 loc) · 6.29 KB
/
test_RFB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import print_function
import sys
import os
import pickle
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import numpy as np
from torch.autograd import Variable
from data import VOCroot,COCOroot
from data import AnnotationTransform, COCODetection, VOCDetection, BaseTransform, VOC_300,VOC_512,COCO_300,COCO_512, COCO_mobile_300
import torch.utils.data as data
from layers.functions import Detect,PriorBox
from utils.nms_wrapper import nms
from utils.timer import Timer
parser = argparse.ArgumentParser(description='Receptive Field Block Net')
parser.add_argument('-v', '--version', default='RFB_vgg',
help='RFB_vgg ,RFB_E_vgg or RFB_mobile version.')
parser.add_argument('-s', '--size', default='300',
help='300 or 512 input size.')
parser.add_argument('-d', '--dataset', default='VOC',
help='VOC or COCO version')
parser.add_argument('-m', '--trained_model', default='weights/RFB300_80_5.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--save_folder', default='eval/', type=str,
help='Dir to save results')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
parser.add_argument('--retest', default=False, type=bool,
help='test cache results')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
if args.dataset == 'VOC':
cfg = (VOC_300, VOC_512)[args.size == '512']
else:
cfg = (COCO_300, COCO_512)[args.size == '512']
if args.version == 'RFB_vgg':
from models.RFB_Net_vgg import build_net
elif args.version == 'RFB_E_vgg':
from models.RFB_Net_E_vgg import build_net
elif args.version == 'RFB_mobile':
from models.RFB_Net_mobile import build_net
cfg = COCO_mobile_300
else:
print('Unkown version!')
priorbox = PriorBox(cfg)
priors = Variable(priorbox.forward(), volatile=True)
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005):
# dump predictions and assoc. ground truth to text file for now
num_images = len(testset)
num_classes = (21, 81)[args.dataset == 'COCO']
all_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
if args.retest:
f = open(det_file,'rb')
all_boxes = pickle.load(f)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
return
for i in range(num_images):
img = testset.pull_image(i)
x = Variable(transform(img).unsqueeze(0),volatile=True)
if cuda:
x = x.cuda()
_t['im_detect'].tic()
out = net(x) # forward pass
boxes, scores = detector.forward(out,priors)
detect_time = _t['im_detect'].toc()
boxes = boxes[0]
scores=scores[0]
boxes = boxes.cpu().numpy()
scores = scores.cpu().numpy()
# scale each detection back up to the image
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]]).cpu().numpy()
boxes *= scale
_t['misc'].tic()
for j in range(1, num_classes):
inds = np.where(scores[:, j] > thresh)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
np.float32, copy=False)
keep = nms(c_dets, 0.45)
keep = keep[:50]
c_dets = c_dets[keep, :]
all_boxes[j][i] = c_dets
if max_per_image > 0:
image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1,num_classes)])
if len(image_scores) > max_per_image:
image_thresh = np.sort(image_scores)[-max_per_image]
for j in range(1, num_classes):
keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
all_boxes[j][i] = all_boxes[j][i][keep, :]
nms_time = _t['misc'].toc()
if i % 20 == 0:
print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s'
.format(i + 1, num_images, detect_time, nms_time))
_t['im_detect'].clear()
_t['misc'].clear()
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
if __name__ == '__main__':
# load net
img_dim = (300,512)[args.size=='512']
num_classes = (21, 81)[args.dataset == 'COCO']
net = build_net('test', img_dim, num_classes) # initialize detector
state_dict = torch.load(args.trained_model)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
net.eval()
print('Finished loading model!')
print(net)
# load data
if args.dataset == 'VOC':
testset = VOCDetection(
VOCroot, [('2007', 'test')], None, AnnotationTransform())
elif args.dataset == 'COCO':
testset = COCODetection(
COCOroot, [('2014', 'minival')], None)
#COCOroot, [('2015', 'test-dev')], None)
else:
print('Only VOC and COCO dataset are supported now!')
if args.cuda:
net = net.cuda()
cudnn.benchmark = True
# evaluation
#top_k = (300, 200)[args.dataset == 'COCO']
top_k = 200
detector = Detect(num_classes,0,cfg)
save_folder = os.path.join(args.save_folder,args.dataset)
rgb_means = ((104, 117, 123),(103.94,116.78,123.68))[args.version == 'RFB_mobile']
test_net(save_folder, net, detector, args.cuda, testset,
BaseTransform(net.size, rgb_means, (2, 0, 1)),
top_k, thresh=0.01)